Skip to main content

Advertisement

Log in

Fabrication and Characterization of Cu–B4C Metal Matrix Composite by Powder Metallurgy: Effect of B4C on Microstructure, Mechanical Properties and Electrical Conductivity

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Boron carbide-reinforced copper metal matrix composites have been the subject of broad research because of their good mechanical, electrical and tribological properties. In the present research, Cu–B4C composites containing 5, 10 and 15 wt% of B4C have been fabricated by cold powder compaction followed by conventional sintering at 900 °C for 1 h under argon atmosphere. The fabricated composites are characterized by X-ray diffraction, optical microscopy and field emission scanning electron microscopy (FESEM). From microscopic study, we have found that B4C particles are homogeneously distributed in the copper matrix and there is good compatibility between B4C and Cu. The microstructure analyzed by FESEM shows that the interface between Cu matrix and B4C is clean and no interfacial product is formed. The effect of B4C particles and their weight fraction on microstructure, mechanical properties and electrical conductivity is also studied. The Vickers hardness value increases with increasing weight percentage of boron carbide in Cu matrix. The hardness value increases from 38 VHN for pure copper to 79 VHN for Cu-15 wt% B4C metal matrix composite (MMC). A maximum relative density of 82% is achieved for Cu-5 wt% B4C MMC. The maximum compressive strength of 315 MPa is achieved for Cu-15 wt% B4C MMC. The electrical conductivity of pure Cu is found to be 4.5 × 106 S/m, and it decreases to 1.92 × 106, 0.75 × 106 and 0.32 × 106 S/m for Cu-5 wt% B4C, Cu-10 wt% B4C and Cu-15 wt% B4C MMCs, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ghahremani D, Ebadzadeh T, and Maghsodipour A, Ceram Int Part A 41 (2015) 1957.

    Article  Google Scholar 

  2. Celebi Efe G, Ipek M, Zeytin S, and Bindal C, Compos Part B 43 (2012) 1813.

    Article  Google Scholar 

  3. Nayak D, Ray N, Sahoo R, and Debata M, Tribol Trans 57 (2014) 908.

    Article  Google Scholar 

  4. Schubert T, Trindade B, Weißgärber T, and Kieback B, Mater Sci Eng A 475 (2008) 39.

    Article  Google Scholar 

  5. Tariolle S, Thévenot F, Aizenstein M, Dariel MP, Frumin N, and Frage N, J Solid State Chem 177 (2004) 400.

    Article  Google Scholar 

  6. Moustafa S F, Abdel-Hamid Z, and Abd-Elhay A M, Mater Lett 53 (2002) 244.

    Article  Google Scholar 

  7. Mansourzadeh S, Hosseini M, Salahinejad E, and Yaghtina A H, Pro Nat Sci Mater Inter 26 (2016) 613.

    Article  Google Scholar 

  8. Yazdani A, and Salahinejad E, Mater Des 32 (2011) 3137.

    Article  Google Scholar 

  9. Pozdniakov A V, Lotfy A, Qadir A, Shalaby E, Khomutov M G, Churyumov A Y, and Zolotorevskiy V S, Mater Sci Eng A 688 (2017) 1.

    Article  Google Scholar 

  10. Zheng R, Chen J, Zhang Y, Ameyama K, and Ma C, Mater Sci Eng A 601 (2014) 20.

    Article  Google Scholar 

  11. Altinsoy I, Efe F G C, Aytaş D, Kılıç M, Ozbek I, Bindal C, Period Eng Nat Sci 1 (2013) 34.

    Google Scholar 

  12. Sathiskumar R, Murugan N, Dinaharan I, and Vijay S J, Arch Metal Mater 59 (2014) 83.

    Article  Google Scholar 

  13. Sathiskumar R, Murugan N, Dinaharan I, and Vijay S J, Mater Charac 84 (2013) 16.

    Article  Google Scholar 

  14. Rama Rao S, and Padmanabhan G, Inter J Mater Biomat Appl 2 (2012) 18.

    Google Scholar 

  15. Shirvanimoghaddam K, Khayyam H, Abdizadeh H, Karbalaei Akbari M, Pakseresht A H, Ghasali E, and Naebe M, Mater Sci Eng A 658 (2016) 135–149.

    Article  Google Scholar 

  16. Ahn B.-W., Kim J.-H., Hamad K., and Jung S.-B., J Alloys Compd 693 (2017) 688.

    Article  Google Scholar 

  17. Akbari M, Shojaeefard M H, Asadi P, Khalkhali A, Trans Nonferrous Met Soc China 27 (2017) 2317.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Chaira.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajapati, P.K., Chaira, D. Fabrication and Characterization of Cu–B4C Metal Matrix Composite by Powder Metallurgy: Effect of B4C on Microstructure, Mechanical Properties and Electrical Conductivity. Trans Indian Inst Met 72, 673–684 (2019). https://doi.org/10.1007/s12666-018-1518-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1518-2

Keywords

Navigation