Skip to main content

Advertisement

Log in

Deciphering factors controlling trace element distribution in the soils of Karaduvar industrial-agricultural area (Mersin, SE Turkey)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In this study, 30 topsoil samples were collected from Karaduvar area (Mersin, SE Turkey) where at present various industrial and agricultural activities are occurring. Using a five-step ultrasound-assisted sequential extraction (UASE) procedure, trace elements in soil samples were partitioned into the following: (1) soluble-exchangeable; (2) bound to carbonates; (3) bound to Fe- and Mn-oxides; (4) bound to organic matter and sulfide compounds, and (5) residual fraction. Concentrations of 11 trace elements in the extracts were determined using ICP-MS. Total concentrations ranged between (in mg kg−1) 3.35 and 7.26 for As; 1.18 and 3.96 for Cd; 10.76 and 20.26 for Co; 37.99 and 63.48 for Cr; 18.55 and 243.1 for Cu; 338.7 and 565.6 for Mn; 4.42 and 6.44 for Mo; 148 and 279.3 for Ni; 10.12 and 73.71 for Pb; 17.93 and 36.55 for V, and 25.46 and 331.7 for Zn. Factor analysis was applied to dataset in order to discriminate between natural and anthropogenic pollution sources and factors controlling the spatial distribution of trace elements in the area. Results suggest that distributions of Co, Cr, Mn, and Ni are mainly controlled by lithological factors, whereas, distributions of Cu, Pb, and Zn can be attributed to agricultural activities such as pesticide/herbicide use and fertilizer application, as well as irrigation with petroleum hydrocarbon-contaminated groundwater. Highest concentrations of Cd and Mo are generally observed around the diesel-fired thermal power plant and ATAŞ refinery. Highest concentrations of As and V are generally observed at the NW sector of the area; however, no definitive source can be designated for both of these elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abderahman N, Abu-Rukah YH (2006) An assessment study of heavy metal distribution within soil in upper course of Zarqa River basin/Jordan. Environ Geol 49:1116–1124. doi:10.1007/s00254-005-0154-4

    Article  Google Scholar 

  • Abimbola AF, Kehinde-Phillips OO, Olatunji AS (2007) The Sagamu cement factory, SW Nigeria: ıs the dust generated a potential health hazard? Environ Geochem Health 29:163–167. doi:10.1007/s10653-006-9068-7

    Article  Google Scholar 

  • Ahnstrom ZS, Parker DR (1999) Development and assessment of a sequential extraction procedure for the fractionation of soil cadmium. Soil Sci Soc Am J 63:1650–1658

    Google Scholar 

  • Al-Khashman OA, Shawabkeh RA (2006) Metals distribution in soils around the cement factory in southern Jordan. Environ Pollut 140:387–394. doi:10.1016/j.envpol.2005.08.023

    Article  Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils. Glasgow, Scotland Blackie Academic and Professional Publishers, London, pp 22–51

    Google Scholar 

  • Borovec Z (1996) Evaluation of the concentrations of trace elements in stream sediments by factor and cluster analysis and the sequential extraction procedure. Sci Total Environ 177:237–250. doi:10.1016/0048-9697(95)04901-0

    Article  Google Scholar 

  • Bowen HJM (1979) The environmental chemistry of the elements. Academic Press, New York

    Google Scholar 

  • Bretzel F, Calderisi M (2006) Metal contamination in urban soils of coastal Tuscany (Italy). Environ Monit Assess 118:319–335. doi:10.1007/s10661-006-1495-5

    Article  Google Scholar 

  • Bundt M, Kretzschmar S, Zech W, Wilcke W (1997) Seasonal redistribution of manganese in soil aggregates of a Costa Rican coffee field. Soil Sci 162:641–647. doi:10.1097/00010694-199709000-00005

    Article  Google Scholar 

  • Campanella L, Dorazio D, Petronio BM, Pietrantonio E (1995) Proposal for a metal speciation study in sediments. Anal Chim Acta 309:387–393. doi:10.1016/0003-2670(95)00025-U

    Article  Google Scholar 

  • Chao TT (1972) Selective dissolution of manganese oxides from soils and sediments with acidified hydroxylamine hydrochloride. Soil Sci Soc Am Proc 36:764–768

    Google Scholar 

  • Chopin EIB, Marin B, Mkoungafoko R, Rigaux A, Hopgood MJ, Delannoy E, Cancès B, Laurain M (2008) Factors affecting distribution and mobility of trace elements (Cu, Pb, Zn) in a perennial grapevine (Vitis vinifera L.) in the Champagne region of France. Environ Pollut 156:1092–1098. doi:10.1016/j.envpol.2008.04.015

    Article  Google Scholar 

  • Christensen TH (1984) Cadmium soil sorption at low concentrations: I. Effect of time, cadmium load, pH and calcium. Water Air Soil Pollut 21:105–114. doi:10.1007/BF00163616

    Article  Google Scholar 

  • Closs LG, Nichol I (1975) The role of factor and regression analysis in the interpretation of geochemical reconnaissance data. Can J Earth Sci 12:1316–1330

    Google Scholar 

  • Davis JC (1986) Statistics and data analysis in geology. Wiley, New York

    Google Scholar 

  • Demirel Z, Güler C (2006) Hydrogeochemical evolution of groundwater in a Mediterranean coastal aquifer, Mersin-Erdemli basin (Turkey). Environ Geol 49:477–487. doi:10.1007/s00254-005-0114-z

    Article  Google Scholar 

  • Falk H, Lavergren U, Bergbäck B (2006) Metal mobility in alum shale from Öland, Sweden. J Geochem Explor 90:157–165. doi:10.1016/j.gexplo.2005.10.001

    Article  Google Scholar 

  • Filgueiras AV, Lavilla I, Bendicho C (2002) Chemical sequential extraction for metal partitioning in environmental solid samples. J Environ Monit 4:823–857. doi:10.1039/b207574c

    Article  Google Scholar 

  • Gimeno-García E, Andreu V, Boluda R (1995) Distribution of heavy metals in rice farming soils. Arch Environ Contam Toxicol 29:476–483. doi:10.1007/BF00208377

    Article  Google Scholar 

  • Gómez Ariza JL, Giráldez I, Sánchez-Rodas D, Morales E (2000) Metal sequential extraction procedure optimized for heavily polluted and iron oxide rich sediments. Anal Chim Acta 414:151–164. doi:10.1016/S0003-2670(00)00804-7

    Article  Google Scholar 

  • Güler C, Thyne GD, McCray JE, Turner AK (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol J 10:455–474. doi:10.1007/s10040-002-0196-6

    Article  Google Scholar 

  • Gupta UC, Gupta SC (1998) Trace element toxicity relationships to crop production and livestock and human health: implications for management. Commun Soil Sci Plant Anal 29:1491–1522. doi:10.1080/00103629809370045

    Article  Google Scholar 

  • Harman HH (1967) Modern factor analysis. The University of Chicago Press, Chicago

    Google Scholar 

  • Ho MD, Evans GJ (1997) Operational speciation of cadmium, copper, lead and zinc in the NIST standard reference materials 2710 and 2711 (Montana Soil) by the BCR sequential extraction procedure and flame atomic absorption spectrometry. Anal Commun 34:363–364. doi:10.1039/a706954e

    Article  Google Scholar 

  • Kabata-Pendias A (2001) Trace elements in soils and plants. CRC Press, Boca Raton

    Google Scholar 

  • Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Meas 20:141–151. doi:10.1177/001316446002000116

    Article  Google Scholar 

  • Kurt MA, Güler C, Alpaslan M, Temel A (2008) Karaduvar (Mersin) tarım topraklarındaki bazı ağır metallerin kökeni ve dağılımının faktör analizi ve CBS yardımıyla belirlenmesi: 61. Türkiye Jeoloji Kurultayı, Bildiri Özleri Kitabı (in Turkish), s. 17

  • Levy DB, Barbarrick KA, Siemer EG, Sommers LE (1992) Distribution and partitioning of trace metals in contaminated soils near Leadville, Colorado. J Environ Qual 21:185–195

    Google Scholar 

  • Li X, Huang C (2007) Environment impact of heavy metals on urban soil in the vicinity of industrial area of Baoji city, P.R. China. Environ Geol 52:1631–1637. doi:10.1007/s00254-006-0608-3

    Article  Google Scholar 

  • Loska K, Wiechuła D, Korus I (2004) Metal contamination of farming soils affected by industry. Environ Int 30:159–165. doi:10.1016/S0160-4120(03)00157-0

    Article  Google Scholar 

  • Lu Y, Gong Z, Zhang G, Burghardt W (2003) Concentrations and chemical speciations of Cu, Zn, Pb and Cr of urban soils in Nanjing, China. Geoderma 115:101–111. doi:10.1016/S0016-7061(03)00079-X

    Article  Google Scholar 

  • Ma YB, Uren NC (1998) Transformations of heavy metals added to soil—application of a new sequential extraction procedure. Geoderma 84:157–168. doi:10.1016/S0016-7061(97)00126-2

    Article  Google Scholar 

  • McGrath SP, Cegarra J (1992) Chemical extractability of heavy metals during and after long-term applications of sewage sludge to soil. J Soil Sci 43:313–321. doi:10.1111/j.1365-2389.1992.tb00139.x

    Article  Google Scholar 

  • Mench M, Didier V, Loeffler M, Gomez A, Masson P (1994) Evaluation of metal mobility, plant availability and immobilization by chemical agents in a limed silty soil. J Environ Qual 23:58–63

    Google Scholar 

  • Merian E (1991) Metals and their compounds in the environment: Occurrence, analysis and biological relevance. VCH, Weinheim

    Google Scholar 

  • NIST (2003) Certificate of analysis, standard reference material 2710 (Montana Soil). National Institute of Standards and Technology, Gaithersburg

    Google Scholar 

  • Official Gazette (2005) Soil quality control regulation of Turkey. Official Gazette no. 25831, 31.05.2005 (in Turkish), Ministry of the Environment and Forestry, Ankara

  • Peltola P, Åström M (2003) Urban geochemistry: a multimedia and multielement survey of a small town in northern Europe. Environ Geochem Health 25:397–419. doi:10.1023/B:EGAH.0000004553.56489.0c

    Article  Google Scholar 

  • Polyák K, Hlavay J (2001) Chemical fractionation of a fly ash sample by a sequential leaching method. Fresenius J Anal Chem 371:838–842. doi:10.1007/s00216-001-1094-9

    Article  Google Scholar 

  • R Development Core Team (2007) R (version 2.5.1): a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ramos L, Hernandez LM, Gonzalez MJ (1994) Sequential fractionation of copper, lead, cadmium and zinc in soils from or near Doñana National Park. J Environ Qual 23:50–57

    Article  Google Scholar 

  • Rayment GE, Higginson FR (1992) Australian laboratory handbook of soil and water chemical methods. Inkata Press, Melbourne

    Google Scholar 

  • Romaguera F, Boluda R, Fornes F, Abad M (2008) Comparison of three sequential extraction procedures for trace element partitioning in three contaminated Mediterranean soils. Environ Geochem Health 30:171–175. doi:10.1007/s10653-008-9140-6

    Article  Google Scholar 

  • Ross SM (1994) Retention, transformation and mobility of toxic metals in soils. In: Ross SM (ed) Toxic metals in soil–plant systems. Wiley, Chichester, pp 63–152

    Google Scholar 

  • Rummel RJ (1970) Applied factor analysis. Northwestern University Press, Evanston

    Google Scholar 

  • Sanders JR, McGrath SP, Adams TM (1986) Zinc, copper and nickel concentrations in ryegrass grown on sewage sludge contaminated soils of different pH. J Sci Food Agric 37:961–968. doi:10.1002/jsfa.2740371003

    Article  Google Scholar 

  • Şenol M, Şahin Ş, Duman TY (1998) Adana-Mersin dolayının jeoloji etüd raporu. MTA, Ankara, p 46 (in Turkish)

    Google Scholar 

  • Shuman LM (1985) Fractionation method for soil microelements. Soil Sci 140:11–22. doi:10.1097/00010694-198507000-00003

    Article  Google Scholar 

  • StatSoft, Inc. (1997). Electronic statistics textbook, Tulsa. http://www.statsoft.com/textbook/stathome.html

  • Swan ARH, Sandilands M (1995) Introduction to geological data analysis. Blackwell, Maine

    Google Scholar 

  • Tao S (1998) Factor score mapping of soil trace element contents for the Shenzhen area. Water Air Soil Pollut 102:415–425. doi:10.1023/A:1004915128107

    Article  Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851. doi:10.1021/ac50043a017

    Article  Google Scholar 

  • Väisänen A, Kiljunen A (2005) Ultrasound-assisted sequential extraction method for the evaluation of mobility of toxic elements in contaminated soils. Int J Environ Anal Chem 85:1037–1049. doi:10.1080/03067310500138992

    Article  Google Scholar 

  • Wang X-S, Qin Y (2007) Some characteristics of the distribution of heavy metals in urban topsoil of Xuzhou, China. Environ Geochem Health 29:11–19. doi:10.1007/s10653-006-9052-2

    Article  Google Scholar 

  • Wilcke W, Müller S, Kanchanakool N, Zech W (1998) Urban soil contamination in Bangkok: heavy metal and aluminum partitioning in topsoils. Geoderma 86:211–228. doi:10.1016/S0016-7061(98)00045-7

    Article  Google Scholar 

  • Yaman S (1991) Mersin ofiyolitinin jeolojisi ve metallojenisi. Ahmet Acar Jeoloji Sempozyumu Bildirileri, pp 225–267 (in Turkish)

Download references

Acknowledgments

This research was fully funded by TÜBİTAK (Scientific and Technical Research Council of Turkey) under the grant number ÇAYDAG 104Y268. Financial assistance provided from July 2005 to October 2007 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cüneyt Güler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Güler, C., Alpaslan, M., Kurt, M.A. et al. Deciphering factors controlling trace element distribution in the soils of Karaduvar industrial-agricultural area (Mersin, SE Turkey). Environ Earth Sci 60, 203–218 (2010). https://doi.org/10.1007/s12665-009-0180-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-009-0180-8

Keywords

Navigation