Skip to main content
Log in

Hydrogeochemical processes in the groundwater environment of Heihe River Basin, northwest China

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The Heihe River Basin is a typical arid inland river basin for examining stress on groundwater resources in northwest China. The basin is composed of large volumes of unconsolidated Quaternary sediments of widely differing grain size, and during the past half century, rapid socio-economic development has created an increased demand for groundwater resources. Understanding the hydrogeochemical processes of groundwater and water quality is important for sustainable development and effective management of groundwater resources in the Heihe River basin. To this end, a total of 30 representative groundwater samples were collected from different wells to monitor the water chemistry of various ions and its quality for irrigation. Chemical analysis shows that water presents a large spatial variability of chemical facies (SO4 2−–HCO 3 , SO4 2−–Cl, and Cl–SO4 2−) as groundwater flow from recharge area to discharge area. The ionic ratio indicates positive correlation between the flowing pairs of parameters: Cl and Na+(r = 0.95), SO4 2− and Na+ (r = 0.84), HCO3 and Mg2+(r = 0.86), and SO4 2− and Ca2+ (r = 0.91). Dissolution of minerals, such as halite, gypsum, dolomite, silicate, and Mirabilite (Na2SO4·10H2O) in the sediments results in the Cl, SO4 2−, HCO3 , Na+, Ca2+ and Mg2+ content in the groundwater. Other reactions, such as evaporation, ion exchange, and deposition also influence the water composition. The suitability of the groundwater for irrigation was assessed based on the US Salinity Laboratory salinity classification and the Wilcox diagram. The results show that most of the groundwater samples are suitable for irrigation uses barring a few locations in the dessert region in the northern sub-basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abu-Jaber NS, Aloosy AS, Jaward A (1997) Determination of aquifer susceptibility to pollution using statistical analysis. Environ Geol 3:94–106. doi:10.1007/s002540050168

    Article  Google Scholar 

  • Aravindan S (1999) Integrated hydro-geological studies in hard rock aquifer system of Gadilam River basin, Tamil Nadu, India. PhD thesis, Bharathidasan University, Thiruchirappalli, p 110

  • Chen LH (1996) Desertization and its control in the lower reach of the Heihe River. J Nat Resour 2:35–42 (in Chinese)

    Google Scholar 

  • Chen ZY, Nie ZL, Zhang GH, Wan L, Shen JM (2006) Environmental isotopic study on the recharge and residence time of groundwater in the Heihe River Basin, northwestern China. Hydrogeol J 14:1635–1651. doi:10.1007/s10040-006-0075-7

    Article  Google Scholar 

  • Cheng LH, Li FX, Di XM, Zhang JX (1998) Aeolian sandy soils in China (in Chinese). Sciences Press, Beijing

    Google Scholar 

  • Dalton MG, Upchurch SB (1978) Interpretation of hydrochemical facies by factor analysis. Ground Water 16(4):228–233. doi:10.1111/j.1745-6584.1978.tb03229.x

    Article  Google Scholar 

  • Davis JC (1986) Statistics and data analysis in geology. Wiley, New York

    Google Scholar 

  • Deutsch WJ (1997) Groundwater geochemistry: fundamentals and application to contamination. CRC Press, Boca Raton

    Google Scholar 

  • Domenico PA (1972) Concepts and models in groundwater hydrology. McGraw-Hill, New York

    Google Scholar 

  • Drever JI (1988) The geochemistry of natural waters, 2nd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Edmunds WM (1996) Bromide geochemistry in British groundwaters. Miner Mag 60:275–284. doi:10.1180/minmag.1996.060.399.03

    Article  Google Scholar 

  • Fan XP (1991) Characteristics of the stream-aquifer systems and rational utilization of water resources in the Heihe River. Gansu Geol 12:1–16 (in Chinese)

    Google Scholar 

  • Feng Q, Cheng GD (1998) Current situation, problem and rational utilization of water resources in arid north-western China. J Arid Environ 40:373–382. doi:10.1006/jare.1998.0456

    Article  Google Scholar 

  • Feng Q, Wei L, Su YH, Zhang YW, Si JH (2004) Distribution and evolution of water chemistry in Heihe River Basin. Environ Geol 45:947–956. doi:10.1007/s00254-003-0950-7

    Article  Google Scholar 

  • Gao QZ (1991) Development and utilization of water resources in the Heihe River catchment. Gansu Science and Technology Press, Lanzhou, p 205

    Google Scholar 

  • Gao Q, Li F (1990) Rational development and utilization of water resources in the Heihe River basin of Northwest China. Gansu Press of Science and technology, Lanzhou, pp 23–95 (in Chinese)

    Google Scholar 

  • Gao Q, Wu Y, Liu F (2004) Unified management of water resources and enhance of carrying capacity in Heihe River Basin. J Desert Res 24(2):156–161 (in Chinese)

    Google Scholar 

  • Garcia MG, del v Hidalgo M, Blessa MA (2001) Geochemistry of groundwater in the alluvial plain of Tucuman province, Argentina. Hydrogeol J 9:597–610. doi:10.1007/s10040-001-0166-4

    Article  Google Scholar 

  • Grande JA, Gonzalez A, Beltaran R, Sanchez-Rodas D (1996) Application of factor analysis to the study of contamination in the aquifer system of Ayamonte-Huelva (Spain). Ground Water 34(1):155–161. doi:10.1111/j.1745-6584.1996.tb01875.x

    Article  Google Scholar 

  • Guendouz A, Moulla AS, Edmunds WM, Zouari K, Shand P, Mamou A (2003) Hydrogeochemical and isotopic evolution of water in the Complexe Terminal aquifer in the Algerian Sahara. Hydrogeol J 11:483–495. doi:10.1007/s10040-003-0263-7

    Article  Google Scholar 

  • Guo H, Wang Y (2004) Hydrogeochemical processes in shallow quaternary aquifers from the northern part of the Datong Basin. China Appl Geochem 19:19–27. doi:10.1016/S0883-2927(03)00128-8

    Article  Google Scholar 

  • Gupta LP, Subramanian V (1998) Geochemical factors controlling the chemical nature of water and sediments in the Gomti River, India. Environ Geol 31:102–108. doi:10.1007/s002540050325

    Article  Google Scholar 

  • Herczeg AL, Edmunds WM (1999) Inorganic ions as tracers. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Boston, pp 31–77

    Google Scholar 

  • Hitchon B, Billings GK, Klovan JE (1971) Geochemistry and origin of formation waters in the western Canada sedimentary basin–III: factors controlling chemical composition. Geochim Cosmochem Acta 35:567–598. doi:10.1016/0016-7037(71)90088-3

    Article  Google Scholar 

  • Hussein MT (2004) Hydrochemical evaluation of groundwater in the Blue Nile Basin, eastern Sudan, using conventional and multivariate techniques. Hydrogeol J 12:144–158. doi:10.1007/s10040-003-0265-5

    Article  Google Scholar 

  • Jeong CH (2001) Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea. J Hydrol 253:194–210. doi:10.1016/S0022-1694(01)00481-4

    Article  Google Scholar 

  • Ji XB, Kang ES, Chen RS, Zhao WZ, Zhang ZH, Jin BW (2006) The impact of the development of water resources on environment in arid inland river basins of Hexi region, Northwestern China. Environ Geol 50:793–801. doi:10.1007/s00254-006-0251-z

    Article  Google Scholar 

  • Kumar M, Ramanathan AL, Rao MS, Kumar B (2006) Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. J Environ Geol 50:1025–1039. doi:10.1007/s00254-006-0275-4

    Article  Google Scholar 

  • Lawrence AR, Upchurch SB (1983) Identification of recharge areas using geochemical factor analysis. Ground Water 20(6):680–687. doi:10.1111/j.1745-6584.1982.tb01387.x

    Article  Google Scholar 

  • Lawrence AR, Gooddy DC, Kanatharana P, Meesilp M, Ramnarong V (2000) Groundwater evolution beneath Hat Yai, a rapidly developing city in Thailand. Hydrogeol J 8:564–575. doi:10.1007/s100400000098

    Article  Google Scholar 

  • Li JJ, Wen S, Zhang Q (1979) Study on the times, extent and form on Tibet plateau upheaving. Sci China 9:608–616

    Google Scholar 

  • Liu CW, Lin KH, Kuo YM (2003) Application of factor analysis in the assessment of ground water quality in a blackfoot disease area in Taiwan. Sci Total Environ 313:77–89. doi:10.1016/S0048-9697(02)00683-6

    Article  Google Scholar 

  • Lloyd JW, Heathcote JA (1985) Natural inorganic hydrochemistry in relation to groundwater, an introduction. Clarendon Press, Oxford

    Google Scholar 

  • Ma JZ, Edmunds WM (2006) Groundwater and lake evolution in the Badain Jaran desert ecosystem, Inner Mongolia. Hydrogeol J 14:1231–1243. doi:10.1007/s10040-006-0045-0

    Article  Google Scholar 

  • Ma JZ, Wang XS, Edmunds WM (2005) The characteristics of groundwater resources and their changes under the impacts of human activity in the arid Northwest China-a case study of the Shiyang River Basin. J Arid Environ 61:277–295. doi:10.1016/j.jaridenv.2004.07.014

    Article  Google Scholar 

  • Mathess G (1982) The properties of groundwater. Wiley, New York, p 498

    Google Scholar 

  • McLean W, Jankowski J, Lavitt N (2000) Groundwater quality and sustainability in an alluvial aquifer, Australia. In: Sililo O et al (eds) Groundwater, past achievements and future challenges. A Balkema, Rotterdam, pp 567–573

    Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) Users guide to PHREEQC (version 2)—a computer program for speciation, batchreaction, one-dimensional transport and inverse geochemical calculations. US Geol Surv Water Resour Investig Rep, pp 99–4259

  • Robinove CC, Langfrod RH, Brookhart W (1958) Saline water resources of North Dakota. US Geological Survey Water Supply Paper. pp. 1428

  • Saleh A, Al-Ruwaih F, Shehata M (1999) Hydrogeochemical processes operating within the main aquifers of Kuwait. J Arid Environ 42:195–209. doi:10.1006/jare.1999.0511

    Article  Google Scholar 

  • Sami K (1992) Recharge mechanisms and geochemical processes in a semi-arid sedimentary basin, Eastern Cape, South Africa. J Hydrol 139:27–48. doi:10.1016/0022-1694(92)90193-Y

    Article  Google Scholar 

  • Schoeller H (1965) Hydrodynamique dans le karst [Hydrodynamics of karst]. Actes du Colloques de Doubronik, IAHS/UNESCO, Wallingford, UK and Paris, France, pp 3–20

  • Schuh WM, Klinekebiel DL, Gardner JC, Meyar RF (1997) Tracer and nitrate movements to groundwater in the Norruem Great Plains. J Environ Qual 26:1335–1347

    Article  Google Scholar 

  • Singh AK (2002) Quality assessment of surface and sub-surface water of Damodar river basin, India. J Environ Health 44:41–49

    Google Scholar 

  • Smil V (1993) China’s environmental crisis: an inquiry into the limits of national development. ME Sharpe, New York

    Google Scholar 

  • Subbarao C, Subbarao NV, Chandu SN (1995) Characterisation of groundwater contamination using factor analysis. Environ Geol 28(4):175–180. doi:10.1007/s002540050091

    Article  Google Scholar 

  • Todd D (1980) Groundwater hydrology, 2nd edn. Wiley, New York

    Google Scholar 

  • Wang GX, Cheng GD (1998) Changes of hydrology and ecological environment during late 50 years in Heihe River basin. J Des Res 18:233–238 (in Chinese)

    Google Scholar 

  • Wang GX, Cheng GD (1999) Land desertification status and developing trend in the Hei River basin. J Des Res 19:368–374 (in Chinese)

    Google Scholar 

  • Wang Z, Liu C, You G (1981) Glacier Inventory of China I, Qilian Mountains. Lanzhou Institute of Glaciology and Geocryology, Academia Sinica, , pp 59–119 (in Chinese)

  • Wen X, Wu Y, Zhang Y, Liu F (2005) Hydrochemical characteristics and salinity of groundwater in the Ejina basin, Northwestern China. Environ Geol 48:665–675. doi:10.1007/s00254-005-0001-7

    Article  Google Scholar 

  • Wilcox LV (1955) Classification and use of irrigation waters. USDA, 1969, Washington

  • Wu Y, Wen X, Zhang Y (2004) Analysis of the exchange of groundwater and river water by using Radon-222 in the middle Heihe Basin of Northwestern China. Environ Geol 45:647–653. doi:10.1007/s00254-003-0914-y

    Article  Google Scholar 

  • Yang Z (1991) Glacier water resources in China. Science Press, Beijing, pp 119–136 (in Chinese)

    Google Scholar 

  • Zhu YH, Wu YQ, Sam D (2004) A survey: obstacles and strategies for the development of ground-water resources in arid inland river basins of Western China. J Arid Environ 9:351–367. doi:10.1016/j.jaridenv.2003.12.006

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the National Social Science Foundation (No. 08XJY009), National Natural Science Foundation of China (Nos. 40701054 and 40671010) and Chinese Academy of Sciences Knowledge Innovation Project (grant number: KZCX2-YW-Q10-2-4). We would like to warmly acknowledge the advice and suggestions of Dr. James W. LaMoreaux (Editor in Chief) and the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Yonghong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaofeng, Z., Yonghong, S., Chunlin, H. et al. Hydrogeochemical processes in the groundwater environment of Heihe River Basin, northwest China. Environ Earth Sci 60, 139–153 (2010). https://doi.org/10.1007/s12665-009-0175-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-009-0175-5

Keywords

Navigation