Skip to main content

Advertisement

Log in

Biological Pretreatment of Lignocellulosic Biomass for Biofuels and Bioproducts: An Overview

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Increasing energy demands are not only exploiting the fossil resources but, also depleting natural environment. Biofuels from lignocellulosic biomass is a renewable, ecofriendly, sustainable and could be a promising alternative to fossil fuels. However, pretreatment is an essential step to disarray the layers of lignocellulose prior to enzymatic hydrolysis. Among various pretreatments of lignocellulose, the biological pretreatment using microorganisms such as bacteria and fungi are gaining popularity due to its financial and environmental benefits. Careful selection of the suitable microbial consortium for efficient pretreatment of biomass is a critical step. The co-culture of bacteria and/or fungi in consolidated bioprocessing (CBP) is highly beneficial in the breakdown of complex biopolymers due to their high enzyme activity. Our selection of highly promising bacterial and/or fungal consortium has the ability to produce various extracellular enzymes including cellulase, hemicellulase, and lignases. It can be used in CBP for efficient biological pretreatment of lignocellulosic biomass following production of biofuels and bioproducts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hamelinck, C.N., Van Hooijdonk, G., Faaij, A.: Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28, 384–410 (2005). doi:10.1016/j.biombioe.2004.09.002

    Google Scholar 

  2. Millati, R., Syamsiah, S., Niklasson, C., Cahyanto, M.N., Ludquist, K., Taherzadeh, M.J.: Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. BioResources 6, 5224–5259 (2011). doi:10.15376/BIORES.6.4.5224-5259

    Google Scholar 

  3. Horn, S., Vaaje-Kolstad, G., Westereng, B., Eijsink, V.G.: Novel enzymes for the degradation of cellulose. Biotechnol. Biofuels 5, 45 (2012). doi:10.1186/1754-6834-5-45

    Google Scholar 

  4. Zhang, Y.-H.P., Ding, S.-Y., Mielenz, J.R., Cui, J.-B., Elander, R.T., Laser, M., Himmel, M.E., McMillan, J.R., Lynd, L.R.: Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol. Bioeng. 97, 214–223 (2007). doi:10.1002/bit.21386

    Google Scholar 

  5. Zavrel, M., Bross, D., Funke, M., Büchs, J., Spiess, A.C.: High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour. Technol. 100, 2580–2587 (2009). doi:10.1016/j.biortech.2008.11.052

    Google Scholar 

  6. Zhou, S., Ingram, L.O.: Synergistic hydrolysis of carboxymethyl cellulose and acid-swollen cellulose by two endoglucanases (CelZ and CelY) from Erwinia chrysanthemi. J. Bacteriol. 182, 5676–5682 (2000). doi:10.1128/JB.182.20.5676-5682.2000

    Google Scholar 

  7. Putro, J.N., Soetaredjo, F.E., Lin, S.-Y., Ju, Y.-H., Ismadji, S.: Pretreatment and conversion of lignocellulose biomass into valuable chemicals. RSC Adv. 6, 46834–46852 (2016). doi:10.1039/C6RA09851G

    Google Scholar 

  8. Jeffries, T.W.: Biodegradation of lignin and hemicelluloses. In: Biochemistry of Microbial Degradation, pp. 233–277. Springer, Dordrecht (1994)

    Google Scholar 

  9. Chen, H.: Chemical composition and structure of natural lignocellulose. In: Biotechnology of Lignocellulose, pp. 25–71. Springer, Dordrecht (2014)

    Google Scholar 

  10. Sánchez, J., Cardona, C.A.: Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99, 5270–5295 (2008). doi:10.1016/j.biortech.2007.11.013

    Google Scholar 

  11. Larson, E.: Biofuel Production Technologies: Status, Prospects and Implications for Trade and Development. United Nations Conference on Trade and Development, Geneva (2008)

    Google Scholar 

  12. Saritha, M., Arora, A.: Biological pretreatment of lignocellulosic substrates for enhanced delignification and enzymatic digestibility. Indian J. Microbiol. 52, 122–130 (2012). doi:10.1007/s12088-011-0199-x

    Google Scholar 

  13. Kim, M., Day, D.F.: Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. J. Ind. Microbiol. Biotechnol. 38, 803–807 (2011). doi:10.1007/s10295-010-0812-8

    Google Scholar 

  14. Sun, Y., Cheng, J.: Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1–11 (2002). doi:10.1016/S0960-8524(01)00212-7

    Google Scholar 

  15. Pérez, J., Muñoz-Dorado, J., de la Rubia, T., Martínez, J.: Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int. Microbiol. 5, 53–63 (2002). doi:10.1007/s10123-002-0062-3

    Google Scholar 

  16. Atalla, R.H., VanderHart, D.L.: Native cellulose: a composite of two distinct crystalline forms. Science. 223, 283–286 (1984)

    Google Scholar 

  17. VanderHart, D.L., Atalla, R.H.: Studies of microstructure in native celluloses using solid-state carbon-13 NMR. Macromolecules 17, 1465–1472 (1984). doi:10.1021/ma00138a009

    Google Scholar 

  18. O’Sullivan, A.C.: Cellulose: the structure slowly unravels. Cellulose 4, 173–207 (1997). doi:10.1023/A:1018431705579

    Google Scholar 

  19. Joy, J., Jose, C., Mathew, P. L., Thomas, S., Khalaf, M.N.: Biological delignification of biomass. In: Khalaf, M.N. (ed.) Green Polymers and Environmental Pollution Control, p. 271. CRC Press, Boca Raton (2016)

    Google Scholar 

  20. Saha, B.C.: Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30, 279–291 (2003). doi:10.1007/s10295-003-0049-x

    Google Scholar 

  21. Zhang, Z., Donaldson, A.A., Ma, X.: Advancements and future directions in enzyme technology for biomass conversion. Biotechnol. Adv. 30, 913–919 (2012). doi:10.1016/j.biotechadv.2012.01.020

    Google Scholar 

  22. Lewis, N.G., Yamamoto, E.: Lignin: occurrence, biogenesis and biodegradation. Annu. Rev. Plant Biol. 41, 455–496 (1990). doi:10.1146/annurev.pp.41.060190.002323

    Google Scholar 

  23. Cesarino, I., Araújo, P., Domingues Júnior, A.P., Mazzafera, P.: An overview of lignin metabolism and its effect on biomass recalcitrance. Braz. J. Bot. 35, 303–311 (2012). doi:10.1590/S0100-84042012000400003

    Google Scholar 

  24. Mussatto, S.I.: Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery. Elsevier, Amsterdam (2016)

    Google Scholar 

  25. Singh Nigam, P., Singh, A.: Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. 37, 52–68 (2011). doi:10.1016/j.pecs.2010.01.003

    Google Scholar 

  26. Renewable Fuels Association (RFA): Fueling a High Octane Future: 2016 Ethanol Industry Outlook. Renewable Fuels Association (RFA), Washington, D.C. (2016)

    Google Scholar 

  27. Gao, J., Zhang, A., Lam, S.K., Zhang, X., Thomson, A.M., Lin, E., Jiang, K., Clarke, L.E., Edmonds, J.A., Kyle, P.G., Yu, S., Zhou, Y., Zhou, S.: An integrated assessment of the potential of agricultural and forestry residues for energy production in China. GCB Bioenergy 8, 880–893 (2016). doi:10.1111/gcbb.12305

    Google Scholar 

  28. Demirbas, A.: Use of algae as biofuel sources. Energy Convers. Manag. 51, 2738–2749 (2010). doi:10.1016/j.enconman.2010.06.010

    Google Scholar 

  29. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686 (2005). doi:10.1016/j.biortech.2004.06.025

    Google Scholar 

  30. Wan, C., Li, Y.: Fungal pretreatment of lignocellulosic biomass. Biotechnol. Adv. 30, 1447–1457 (2012). doi:10.1016/j.biotechadv.2012.03.003

    Google Scholar 

  31. Shi, J., Qing, Q., Zhang, T., Wyman, C., Lloyd, T.: Biofuels from cellulosic biomass via aqueous processing. In: Ginley, D.S., Cahen, D. (eds.) Fundamentals of Materials for Energy and Environmental Sustainability. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  32. Harmsen, P.F.H., Huijgen, W.J.J., Bermúdez López, L.M., Bakker, R.: Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Energy Res. Cent. Netherlands. 10–13 (2010)

  33. Taherzadeh, M.J., Karimi, K.: Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9, 1621–1651 (2008). doi:10.3390/ijms9091621

    Google Scholar 

  34. Conde-Mejía, C., Jiménez-Gutiérrez, A., El-Halwagi, M.: A comparison of pretreatment methods for bioethanol production from lignocellulosic materials. Process Saf. Environ. Prot. 90, 189–202 (2012). doi:10.1016/j.psep.2011.08.004

    Google Scholar 

  35. Maurya, D.P., Singla, A., Negi, S.: An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 5, 597–609 (2015). doi:10.1007/s13205-015-0279-4

    Google Scholar 

  36. Singh, R., Shukla, A., Tiwari, S., Srivastava, M.: A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renew. Sustain. Energy Rev. 32, 713–728 (2014). doi:10.1016/j.rser.2014.01.051

    Google Scholar 

  37. Kim, Y., Kreke, T., Mosier, N.S., Ladisch, M.R.: Severity factor coefficients for subcritical liquid hot water pretreatment of hardwood chips. Biotechnol. Bioeng. 111, 254–263 (2014). doi:10.1002/bit.25009

    Google Scholar 

  38. Bensah, E.C., Mensah, M.: Chemical pretreatment methods for the production of cellulosic ethanol: technologies and innovations. Int. J. Chem. Eng. 2013, 1–21 (2013). doi:10.1155/2013/719607

    Google Scholar 

  39. Reguera, G., Speers, A., Young, J.: Microbial electrochemical cells and methods for producing electricity and bioproducts therein. US Patent 14/705,766, 20 Aug 2015

  40. Zhao, X.-Q., Zi, L.-H., Bai, F.-W., Lin, H.-L., Hao, X.-M., Yue, G.-J., Ho, N.W.Y.: Bioethanol from lignocellulosic biomass. In: Biotechnology in China III: Biofuels and Bioenergy, pp. 25–51. Springer, Berlin (2011)

    Google Scholar 

  41. Faik, A.: Plant cell wall structure-pretreatment the critical relationship in biomass conversion to fermentable sugars. In: Green Biomass Pretreatment for Biofuels Production. pp. 1–30. Springer, Dordrecht (2013)

    Google Scholar 

  42. Mandels, M., Reese, E.T.: Induction of cellulase in fungi by cellobiose. J. Bacteriol. 79, 816–826 (1960)

    Google Scholar 

  43. Biswas, R., Persad, A., Bisaria, V.: Production of cellulolytic enzymes. In: Bisaria, V.S., Kondo, A. (eds.) Bioprocessing of Renewable Resources to Commodity Bioproducts. pp. 105–132. Wiley, Hoboken (2014)

    Google Scholar 

  44. Narasimha, G., Sridevi, A., Viswanath, B., Chandra, S., Reddy, R.: Nutrient effects on production of cellulolytic enzymes by Aspergillus niger. African J. Biotechnol. 5, 472 (2006)

    Google Scholar 

  45. Valaskova, V., Baldrian, P.: Degradation of cellulose and hemicelluloses by the brown rot fungus Piptoporus betulinus—production of extracellular enzymes and characterization of the major cellulases. Microbiology 152, 3613–3622 (2006). doi:10.1099/mic.0.29149-0

    Google Scholar 

  46. Hatakka, A., Hammel, K.E.: Fungal biodegradation of lignocelluloses. In: Industrial Applications, pp. 319–340. Springer, Berlin (2011)

    Google Scholar 

  47. Hespell, R.: Microbial digestion of hemicelluloses in the rumen. Mol. Microbiol. 5, 362–365 (1988)

    Google Scholar 

  48. López-Mondéjar, R., Zühlke, D., Becher, D., Riedel, K., Baldrian, P.: Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci. Rep. 6, 25279 (2016). doi:10.1038/srep25279

    Google Scholar 

  49. Weingartner Montibeller, V., Porto de Souza Vandenberghe, L., Amore, A., Soccol, C.R., Birolo, L., Vinciguerra, R., Salmon, Xavier, Rigon, D.N., Spier, M., Faraco, V.: Characterization of hemicellulolytic enzymes produced by Aspergillus niger NRRL 328 under solid state fermentation on soybean husks. BioResources 9, 7128–7140 (2014). doi:10.15376/biores.9.4.7128-7140

    Google Scholar 

  50. Gessesse, A., Mamo, G.: High-level xylanase production by an alkaliphilic Bacillus sp. by using solid-state fermentation. Enzyme Microb. Technol. 25, 68–72 (1999)

    Google Scholar 

  51. Zorec, M., Vodovnik, M., Marinšek-Logar, R.: Potential of selected rumen bacteria for cellulose and hemicellulose degradation. Food Technol. Biotechnol. 52, 210–221 (2014)

    Google Scholar 

  52. Dehority, B.: Degradation and utilization of isolated hemicellulose by pure cultures of cellulolytic rumen bacteria. J. Bacteriol. 89, 1515–1520 (1965)

    Google Scholar 

  53. Tangnu, S.K., Blanch, H.W., Wilke, C.R.: Enhanced production of cellulase, hemicellulase, and β-glucosidase by Trichoderma reesei (Rut C-30). Biotechnol. Bioeng. 23, 1837–1849 (1981). doi:10.1002/bit.260230811

    Google Scholar 

  54. Béguin, P., Aubert, J.-P.: The biological degradation of cellulose. FEMS Microbiol. Rev. 13, 25–58 (1994). doi:10.1111/j.1574-6976.1994.tb00033.x

    Google Scholar 

  55. Nidetzky, B., Steiner, W., Claeyssens, M.: Synergistic interaction of cellulases from Trichoderma reesei during cellulose degradation. In: Enzymatic Degradation of Insoluble Carbohydrates, pp. 90–112. American Chemical Society, Washington, D.C. (1996)

    Google Scholar 

  56. Lang, E., Eller, G., Zadrazil, F.: Lignocellulose decomposition and production of ligninolytic enzymes during interaction of white rot fungi with soil microorganisms. Microb. Ecol. 34, 1–10 (1997). doi:10.1007/s002489900029

    Google Scholar 

  57. Naraian, R., Singh, D., Verma, A., Garg, S.K.: Studies on in vitro degradability of mixed crude enzyme extracts produced from Pleurotus spp. J. Environ. Biol. 31, 945–951 (2010)

    Google Scholar 

  58. Kameshwar, A.K.S., Qin, W.: Recent developments in using advanced sequencing technologies for the genomic studies of lignin and cellulose degrading microorganisms. Int. J. Biol. Sci. 12, 156–171 (2016). doi:10.7150/ijbs.13537

    Google Scholar 

  59. Maki, M., Leung, K.T., Qin, W.: The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int. J. Biol. Sci. 5, 500–516 (2009). doi:10.7150/ijbs.5.500

    Google Scholar 

  60. Miron, J., Ben-Ghedalia, D., Morrison, M.: Invited review: adhesion mechanisms of rumen cellulolytic bacteria. J. Dairy Sci. 84, 1294–1309 (2001). doi:10.3168/jds.S0022-0302(01)70159-2

    Google Scholar 

  61. Duff, S.J.B., Murray, W.D.: Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour. Technol. 55, 1–33 (1996). doi:10.1016/0960-8524(95)00122-0

    Google Scholar 

  62. Dien, B.S., Cotta, M.A., Jeffries, T.W.: Bacteria engineered for fuel ethanol production: current status. Appl. Microbiol. Biotechnol. 63, 258–266 (2003). doi:10.1007/s00253-003-1444-y

    Google Scholar 

  63. Paudel, Y.P., Qin, W.: Characterization of ovel ellulase-producing bacteria isolated from rotting wood samples. Appl. Biochem. Biotechnol. 177, 1186–1198 (2015). doi:10.1007/s12010-015-1806-9

    Google Scholar 

  64. Bandounas, L., Wierckx, N.J., de Winde, J.H., Ruijssenaars, H.J.: Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnol. 11, 94 (2011). doi:10.1186/1472-6750-11-94

    Google Scholar 

  65. Palamuru, S., Dellas, N., Pearce, S.L., Warden, A.C., Oakeshott, J.G., Pandey, G.: Phylogenetic and kinetic characterization of a suite of dehydrogenases from a newly isolated bacterium, strain SG61-1L, that catalyze the turnover of guaiacylglycerol-β-guaiacyl ether stereoisomers. Appl. Environ. Microbiol. 81, 8164–8176 (2015). doi:10.1128/AEM.01573-15

    Google Scholar 

  66. De Gonzalo, G., Colpa, D.I., Habib, M.H.M., Fraaije, M.W.: Bacterial enzymes involved in lignin degradation. J. Biotechnol. 236, 110–119 (2016). doi:10.1016/j.jbiotec.2016.08.011

    Google Scholar 

  67. van Bloois, E., Torres Pazmiño, D.E., Winter, R.T., Fraaije, M.W.: A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily. Appl. Microbiol. Biotechnol. 86, 1419–1430 (2010). doi:10.1007/s00253-009-2369-x

    Google Scholar 

  68. Chandra, R., Chowdhary, P.: Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ. Sci. Process. Impacts 17, 326–342 (2015). doi:10.1039/C4EM00627E

    Google Scholar 

  69. Picart, P., de María, P.D., Schallmey, A.: From gene to biorefinery: microbial β-etherases as promising biocatalysts for lignin valorization. Front. Microbiol. 6, 916 (2015). doi:10.3389/fmicb.2015.00916

    Google Scholar 

  70. Sukumaran, R.K., Singhania, R.R., Pandey, A.: Microbial cellulases—production, applications and challenges. J. Sci. Ind. Res. 64, 832–844 (2005)

    Google Scholar 

  71. Ljungdahl, L.G.: The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use. Ann. N. Y. Acad. Sci. 1125, 308–321 (2008). doi:10.1196/annals.1419.030

    Google Scholar 

  72. Arantes, V., Maria, A., Milagres, F.: The synergistic action of ligninolytic enzymes (MnP and laccase) and Fe3+ -reducing activity from white-rot fungi for degradation of Azure B. Enzyme Microb. Technol. 42, 17–22 (2007). doi:10.1016/j.enzmictec.2007.07.017

    Google Scholar 

  73. Shary, S., Kapich, A.N., Panisko, E.A., Magnuson, J.K., Cullen, D., Hammel, K.E.: Differential expression in Phanerochaete chrysosporium of membrane-associated proteins relevant to lignin degradation. Appl. Environ. Microbiol. 74, 7252–7257 (2008). doi:10.1128/AEM.01997-08

    Google Scholar 

  74. Dashtban, M., Schraft, H., Qin, W.: Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int. J. Biol. Sci. 5, 578–595 (2009). doi:10.7150/ijbs.5.578

    Google Scholar 

  75. Paudel, Y.P., Qin, W.: Two bacillus species isolated from rotting wood samples are good candidates for the production of bioethanol using agave biomass. J. Microb. Biochem. Technol. 7, 218–225 (2015). doi:10.4172/1948-5948.1000210

    Google Scholar 

  76. Guillén, F., Martínez, M.J., Gutiérrez, A., Del Rio, J.C., Camarero, S., Ferreira, P., Ruiz-Dueñas, F.J., Speranza, M., Martínez, Á.T.: Biodegradation of lignocellu- losics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int. Microbiol. 8, 195–204 (2005)

    Google Scholar 

  77. Otjen, L., Blanchette, R., Effland, M., Leatham, G.: Assessment of 30 white rot basidiomycetes for selective lignin degradation. Holzforschung 41, 343–349 (1987). doi:10.1515/hfsg.1987.41.6.343

    Google Scholar 

  78. Sun, J., Ding, S.-Y., Doran-Peterson, J.: Biomass and its biorefinery: novel approaches from nature-inspired strategies and technology. In: Biological Converstion of Biomass for Fuels and Chemicals: Exploration from Natural Utilization System, pp. 1–13. Royal Society of Chemistry, Cambridge (2014)

    Google Scholar 

  79. Pathma, J., Sakthivel, N.: Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. Springerplus 1, 26 (2012). doi:10.1186/2193-1801-1-26

    Google Scholar 

  80. Zhang, B., Li, G., Shen, T., Wang, J., Sun, Z.: Changes in microbial biomass C, N, and P and enzyme activities in soil incubated with the earthworms Metaphire guillelmi or Eisenia fetida. Soil Biol. Biochem. 32, 2055–2062 (2000). doi:10.1016/S0038-0717(00)00111-5

    Google Scholar 

  81. Vivas, A., Moreno, B., Garcia-Rodriguez, S., Benítez, E.: Assessing the impact of composting and vermicomposting on bacterial community size and structure, and microbial functional diversity of an olive-mill waste. Bioresour. Technol. 100, 1319–1326 (2009)

    Google Scholar 

  82. Siti Norfariha, M.N., Siti, A.I., Nur Farehah, Z.A., Renuka, R., Norli, I.: Second generation bioethanol from lignocellulosic biomass using worm tea as pretreatment. In: International Proceedings of Chemical, Biological and Environmental Engineering (IPCBEE), pp. 1–5. International Association of Computer Science and Information Technology Press (IACSIT), Singapore (2013)

    Google Scholar 

  83. Russell, J.B., Muck, R.E., Weimer, P.J.: Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen. FEMS Microbiol. Ecol. 67, 183–197 (2009). doi:10.1111/j.1574-6941.2008.00633.x

    Google Scholar 

  84. Fondevila, M., Dehority, B.A.: Degradation and utilization of forage hemicellulose by rumen bacteria, singly in coculture or added sequentially. J. Appl. Bacteriol. 77, 541–548 (1994). doi:10.1111/j.1365-2672.1994.tb04399.x

    Google Scholar 

  85. Weimer, P.J., Nerdahl, M., Brandl, D.J.: Production of medium-chain volatile fatty acids by mixed ruminal microorganisms is enhanced by ethanol in co-culture with Clostridium kluyveri. Bioresour. Technol. 175, 97–101 (2015). doi:10.1016/j.biortech.2014.10.054

    Google Scholar 

  86. Henrissat, B., Davies, G.: Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7, 637–644 (1997). doi:10.1016/S0959-440X(97)80072-3

    Google Scholar 

  87. Dashtban, M., Maki, M., Leung, K.T., Mao, C., Qin, W.: Cellulase activities in biomass conversion: measurement methods and comparison. Crit. Rev. Biotechnol. 30, 302–309 (2010). doi:10.3109/07388551.2010.490938

    Google Scholar 

  88. Sweeney, M.D., Xu, F.: Biomass converting enzymes as industrial biocatalysts for fuels and chemicals: recent developments. Catalysts 2, 244–263 (2012). doi:10.3390/catal2020244

    Google Scholar 

  89. Plácido, J., Capareda, S.: Ligninolytic enzymes: a biotechnological alternative for bioethanol production. Bioresour. Bioprocess. 2, 23 (2015). doi:10.1186/s40643-015-0049-5

    Google Scholar 

  90. nee’Nigam, P.S., Gupta, N., Anthwal, A.: Pre-treatment of agro-industrial residues. In: Biotechnology for Agro-Industrial Residues Utilisation, pp. 13–33. Springer, Dordrecht (2009)

    Google Scholar 

  91. Niladevi, K.N.: Ligninolytic enzymes. In: Biotechnology for Agro-Industrial Residues Utilisation, pp. 397–414. Springer, Dordrecht (2009)

    Google Scholar 

  92. Bugg, T.D., Ahmad, M., Hardiman, E.M., Singh, R.: The emerging role for bacteria in lignin degradation and bio-product formation. Curr. Opin. Biotechnol. 22, 394–400 (2011). doi:10.1016/j.copbio.2010.10.009

    Google Scholar 

  93. Vaaje-Kolstad, G., Westereng, B., Horn, S.J., Liu, Z., Zhai, H., Sørlie, M., Eijsink, V.G.H.: An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 80, 330 (2010)

    Google Scholar 

  94. Hemsworth, G.R., Taylor, E.J., Kim, R.Q., Gregory, R.C., Lewis, S.J., Turkenburg, J.P., Parkin, A., Davies, G.J., Walton, P.H.: The copper active site of CBM33 polysaccharide oxygenases. J. Am. Chem. Soc. 135, 6069–6077 (2013). doi:10.1021/ja402106e

    Google Scholar 

  95. Aachmann, F.L., Sørlie, M., Skjåk-Bræk, G., Eijsink, V.G.H., Vaaje-Kolstad, G.: NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions. Proc. Natl. Acad. Sci. USA 109, 18779–18784 (2012). doi:10.1073/pnas.1208822109

    Google Scholar 

  96. Villares, A., Moreau, C., Bennati-Granier, C., Garajova, S., Foucat, L., Falourd, X., Saake, B., Berrin, J.-G., Cathala, B.: Lytic polysaccharide monooxygenases disrupt the cellulose fibers structure. Sci. Rep. 7, 40262 (2017). doi:10.1038/srep40262

    Google Scholar 

  97. Levasseur, A., Drula, E., Lombard, V., Coutinho, P.M., Henrissat, B.: Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol. Biofuels 6, 41 (2013). doi:10.1186/1754-6834-6-41

    Google Scholar 

  98. Eibinger, M., Ganner, T., Bubner, P., Rošker, S., Kracher, D., Haltrich, D., Ludwig, R., Plank, H., Nidetzky, B.: Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency. J. Biol. Chem. 289, 35929–35938 (2014). doi:10.1074/jbc.M114.602227

    Google Scholar 

  99. Patel, I., Kracher, D., Ma, S., Garajova, S., Haon, M., Faulds, C., Berrin, J., Ludwig, R., Record, E.: Salt-responsive lytic polysaccharide monooxygenases from the mangrove fungus Pestalotiopsis sp. NCi6. Biotechnol. Biofuels 9, 108 (2016)

    Google Scholar 

  100. Dix, N.J., Webster, J.: Fungi of extreme environments. In: Fungal Ecology, pp. 322–340. Springer, Dordrecht (1995)

    Google Scholar 

  101. Sindhu, R., Binod, P., Pandey, A.: Biological pretreatment of lignocellulosic biomass—an overview. Bioresour. Technol. 199, 76–82 (2016). doi:10.1016/j.biortech.2015.08.030

    Google Scholar 

  102. Raimbault, M.: General and microbiological aspects of solid substrate fermentation. Electron. J. Biotechnol. 1, 26–27 (1998). doi:10.4067/s0717-34581998000300007

    Google Scholar 

  103. Raghavarao, K.S.M.., Ranganathan, T., Karanth, N.: Some engineering aspects of solid-state fermentation. Biochem. Eng. J. 13, 127–135 (2003). doi:10.1016/S1369-703X(02)00125-0

    Google Scholar 

  104. Meehnian, H., Jana, A.K., Jana, M.M.: Effect of particle size, moisture content, and supplements on selective pretreatment of cotton stalks by Daedalea flavida and enzymatic saccharification. 3 Biotech 6, 235 (2016). doi:10.1007/s13205-016-0548-x

    Google Scholar 

  105. Saha, B.C., Kennedy, G.J., Qureshi, N., Cotta, M.A.: Biological pretreatment of corn stover with Phlebia brevispora NRRL-13108 for enhanced enzymatic hydrolysis and efficient ethanol production. Biotechnol. Prog. 33, 365–374 (2017). doi:10.1002/btpr.2420

    Google Scholar 

  106. Zhong, W., Yu, H., Song, L., Zhang, X.: Combined pretreatment with white-rot fungus and alkali at near room-temperature for improving saccharification of corn stalks. BioResources 6, 3440–3451 (2011). doi:10.2307/302397

    Google Scholar 

  107. Liong, Y.Y., Halis, R., Lai, O.M., Mohamed, R.: Conversion of lignocellulosic biomass from grass to bioethanol using materials pretreated with alkali and the white rot fungus Phanerochaete chrysosporium. BioResources 7, 5500–5513 (2012). doi:10.15376/biores.7.4.5500-5513

    Google Scholar 

  108. Bhargav, S., Panda, B., Ali, M., Javed, S.: Solid-state fermentation: an overview. Chem. Biochem. Eng. Q. 22, 49–70 (2008)

    Google Scholar 

  109. Marra, L.M., de Oliveira-Longatti, S.M., Soares, C.R., de Lima, J.M., Olivares, F.L., Moreira, F.: Initial pH of medium affects organic acids production but do not affect phosphate solubilization. Braz. J. Microbiol. 46, 367–375 (2015). doi:10.1590/S1517-838246246220131102

    Google Scholar 

  110. Reid, I.D.: Solid-state fermentations for biological delignification. Enzyme Microb. Technol. 11, 786–803 (1989). doi:10.1016/0141-0229(89)90052-5

    Google Scholar 

  111. Agosin, E., Odier, E.: Solid-state fermentation, lignin degradation and resulting digestibility of wheat straw fermented by selected white-rot fungi. Appl. Microbiol. Biotechnol. 21, 397–403 (1985). doi:10.1007/BF00249988

    Google Scholar 

  112. Geiger, G., Brandl, H., Furrer, G., Schulin, R.: The effect of copper on the activity of cellulase and β-glucosidase in the presence of montmorillonite or Al-montmorillonite. Soil Biol. Biochem. 30, 1537–1544 (1998)

    Google Scholar 

  113. Himmel, M.E., Ding, S.-Y., Johnson, D.K., Adney, W.S., Nimlos, M.R., Brady, J.W., Foust, T.D.: Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315, 804–807 (2007). doi:10.1126/science.1137016

    Google Scholar 

  114. Pu, Y., Hu, F., Huang, F., Davison, B.H., Ragauskas, A.J., Huang, C., Sherman, D., Tucker, M., Sun, L., Çetinkol, Ö., Dixon, R., Wang, Z.-Y., Templer, R., Tschaplinski, T.: Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol. Biofuels 6, 15 (2013). doi:10.1186/1754-6834-6-15

    Google Scholar 

  115. Kondo, T., Sawatari, C., Manley, R.S.J., Gray, D.G.: Characterization of hydrogen bonding in cellulose-synthetic polymer blend systems with regioselectively substituted methylcellulose. Macromolecules 27, 210–215 (1994). doi:10.1021/ma00079a031

    Google Scholar 

  116. Mansfield, S., Mooney, C., Saddler, J.: Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol. Prog. 15, 804–816 (1999). doi:10.1021/bp9900864

    Google Scholar 

  117. Rahikainen, J.: Cellulase-lignin interactions in the enzymatic hydrolysis of lignocellulose. (2013)

  118. Narayanaswamy, N., Dheeran, P., Verma, S., Kumar, S.: Biological pretreatment of lignocellulosic biomass for enzymatic saccharification. In: Fang, Z. (ed.) Pretreatment Techniques for Biofuels and Biorefineries, pp. 3–34. Springer, Berlin (2013)

    Google Scholar 

  119. Brenner, K., You, L., Arnold, F.H.: Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol. 26, 483–489 (2008). doi:10.1016/j.tibtech.2008.05.004

    Google Scholar 

  120. Chandra, R., Raj, A., Purohit, H., Kapley, A.: Characterisation and optimisation of three potential aerobic bacterial strains for kraft lignin degradation from pulp paper waste. Chemosphere 67, 839–846 (2007). doi:10.1016/j.chemosphere.2006.10.011

    Google Scholar 

  121. Kato, S., Haruta, S., Cui, Z.J., Ishii, M., Igarashi, Y.: Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria. FEMS Microbiol. Ecol. 51, 133–142 (2004). doi:10.1016/j.femsec.2004.07.015

    Google Scholar 

  122. Kato, S., Haruta, S., Cui, Z.J., Ishii, M., Igarashi, Y.: Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl. Environ. Microbiol. 71, 7099–7106 (2005). doi:10.1128/AEM.71.11.7099-7106.2005

    Google Scholar 

  123. Kato, S., Haruta, S., Cui, Z.J., Ishii, M., Igarashi, Y.: Network relationships of bacteria in a stable mixed culture. Microb. Ecol. 56, 403–411 (2008). doi:10.1007/s00248-007-9357-4

    Google Scholar 

  124. Salimi, F., Mahadevan, R.: Characterizing metabolic interactions in a clostridial co-culture for consolidated bioprocessing. BMC Biotechnol. 13, 95 (2013). doi:10.1186/1472-6750-13-95

    Google Scholar 

  125. Wen, Z., Liao, W., Chen, S.: Production of cellulase/β-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure. Process Biochem. 40, 3087–3094 (2005). doi:10.1016/j.procbio.2005.03.044

    Google Scholar 

  126. Madamwar, D., Patel, S.: Formation of cellulases by co-culturing of Trichoderma reesei and Aspergillus niger on cellulosic waste. World J. Microbiol. Biotechnol. 8, 183–186 (1992). doi:10.1007/BF01195843

    Google Scholar 

  127. Maheshwari, D.K., Gohade, S., Paul, J., Varma, A.: Paper mill sludge as a potential source for cellulase production by Trichoderma reesei QM 9123 and Aspergillus niger using mixed cultivation. Carbohydr. Polym. 23, 161–163 (1994). doi:10.1016/0144-8617(94)90098-1

    Google Scholar 

  128. Ahamed, A., Vermette, P.: Enhanced enzyme production from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger LMA grown as fed batch in a stirred tank bioreactor. Biochem. Eng. J. 42, 41–46 (2008). doi:10.1016/j.bej.2008.05.007

    Google Scholar 

  129. Duenas, R., Tengerdy, R.P., Gutierrez-Correa, M.: Cellulase production by mixed fungi in solid-substrate fermentation of bagasse. World J. Microbiol. Biotechnol. 11, 333–337 (1995). doi:10.1007/BF00367112

    Google Scholar 

  130. Chi, Y., Hatakka, A., Maijala, P.: Can co-culturing of two white-rot fungi increase lignin degradation and the production of lignin-degrading enzymes? Int. Biodeterior. Biodegrad. 59, 32–39 (2007). doi:10.1016/j.ibiod.2006.06.025

    Google Scholar 

  131. Mikesková, H., Novotný, Č., Svobodová, K.: Interspecific interactions in mixed microbial cultures in a biodegradation perspective. Appl. Microbiol. Biotechnol. 95, 861–870 (2012). doi:10.1007/s00253-012-4234-6

    Google Scholar 

  132. Minty, J.J., Singer, M.E., Scholz, S.A., Bae, C.-H., Ahn, J.-H., Foster, C.E., Liao, J.C., Lin, X.N.: Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc. Natl. Acad. Sci. USA 110, 14592–14597 (2013). doi:10.1073/pnas.1218447110

    Google Scholar 

  133. Fu, N., Peiris, P., Markham, J., Bavor, J.: A novel co-culture process with Zymomonas mobilis and Pichia stipitis for efficient ethanol production on glucose/xylose mixtures. Enzyme Microb. Technol. 45, 210–217 (2009). doi:10.1016/j.enzmictec.2009.04.006

    Google Scholar 

  134. Golias, H., Dumsday, G., Stanley, G.: Evaluation of a recombinant Klebsiella oxytoca strain for ethanol production from cellulose by simultaneous saccharification and fermentation: comparison with native cellobiose-utilising yeast strains and performance in co-culture with thermotolerant yeast and Zymomonas mobilis. J. Biotechnol. 96, 155–168 (2002)

    Google Scholar 

  135. Kamsani, N., Salleh, M.M., Yahya, A., Chong, C.S.: Production of lignocellulolytic enzymes by microorganisms isolated from Bulbitermes sp. termite gut in solid-state fermentation. Waste Biomass Valoriz. 7, 357–371 (2016). doi:10.1007/s12649-015-9453-5

    Google Scholar 

  136. Preston, G.M., Haubold, B., Rainey, P.B.: Bacterial genomics and adaptation to life on plants: implications for the evolution of pathogenicity and symbiosis. Curr. Opin. Microbiol. 1, 589–597 (1998). doi:10.1016/S1369-5274(98)80094-5

    Google Scholar 

  137. Cohan, F.M., Koeppel, A.F.: The origins of ecological diversity in prokaryotes. Curr. Biol. 18, R1024–R1034 (2008). doi:10.1016/j.cub.2008.09.014

    Google Scholar 

  138. Grice, E.A., Kong, H.H., Conlan, S., Deming, C.B., Davis, J., Young, A.C., Bouffard, G.G., Blakesley, R.W., Murray, P.R., Green, E.D., Turner, M.L., Segre, J.A.: Topographical and temporal diversity of the human skin microbiome. Science 324, 80- (2009). doi:10.1126/science.1171700 1190–1192 ).

    Google Scholar 

  139. Bader, J., Mast-Gerlach, E., Popović, M.K., Bajpai, R., Stahl, U.: Relevance of microbial coculture fermentations in biotechnology. J. Appl. Microbiol. 109, 371–387 (2010). doi:10.1111/j.1365-2672.2009.04659.x

    Google Scholar 

  140. Kumar, D., Murthy, G.S.: Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnol. Biofuels 4, 27 (2011). doi:10.1186/1754-6834-4-27

    Google Scholar 

  141. van Zyl, W.H., Lynd, L.R., den Haan, R., McBride, J.E.: Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. In: Biofuels, pp. 205–235. Springer, Berlin (2007)

    Google Scholar 

  142. Singh, N., Mathur, A.S., Tuli, D.K., Gupta, R.P., Barrow, C.J., Puri, M.: Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring. Biotechnol. Biofuels 10, 73 (2017). doi:10.1186/s13068-017-0756-6

    Google Scholar 

  143. Demain, A.L., Newcomb, M., Wu, J.H.D.: Cellulase, clostridia, and ethanol. Microbiol. Mol. Biol. Rev. 69, 124–154 (2005). doi:10.1128/MMBR.69.1.124-154.2005

    Google Scholar 

  144. Taylor, M.P., Eley, K.L., Martin, S., Tuffin, M.I., Burton, S.G., Cowan, D.A.: Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends Biotechnol. 27, 398–405 (2009). doi:10.1016/j.tibtech.2009.03.006

    Google Scholar 

  145. Akinosho, H., Yee, K., Close, D., Ragauskas, A.: The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications. Front. Chem. 2, 66 (2014). doi:10.3389/fchem.2014.00066

    Google Scholar 

  146. Jin, M., Balan, V., Gunawan, C., Dale, B.E.: Consolidated bioprocessing (CBP) performance of Clostridium phytofermentans on AFEX-treated corn stover for ethanol production. Biotechnol. Bioeng. 108, 1290–1297 (2011). doi:10.1002/bit.23059

    Google Scholar 

  147. Jain, A., Morlok, C.K., Henson, J.M.: Comparison of solid-state and submerged-state fermentation for the bioprocessing of switchgrass to ethanol and acetate by Clostridium phytofermentans. Appl. Microbiol. Biotechnol. 97, 905–917 (2013). doi:10.1007/s00253-012-4511-4

    Google Scholar 

  148. Weimer, P.: The ruminant animal as a natural biomass-conversion platform and a source of bioconversion agents. In: Biological Conversion of Biomass for Fuels and Chemicals, pp. 248–281. Royal Society of Chemistry, Cambridge (2013)

    Google Scholar 

  149. He, Q., Hemme, C.L., Jiang, H., He, Z., Zhou, J.: Mechanisms of enhanced cellulosic bioethanol fermentation by co-cultivation of Clostridium and Thermoanaerobacter spp. Bioresour. Technol. 102, 9586–9592 (2011). doi:10.1016/j.biortech.2011.07.098

    Google Scholar 

  150. Svetlitchnyi, V.A., Kensch, O., Falkenhan, D.A., Korseska, S.G., Lippert, N., Prinz, M., Sassi, J., Schickor, A., Curvers, S.: Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria. Biotechnol. Biofuels 6, 31 (2013). doi:10.1186/1754-6834-6-31

    Google Scholar 

  151. Chung, D., Cha, M., Guss, A.M., Westpheling, J.: Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc. Natl. Acad. Sci. USA 111, 8931–8936 (2014). doi:10.1073/pnas.1402210111

    Google Scholar 

  152. Lynd, L.R., Weimer, P.J., van Zyl, W.H., Pretorius, I.S.: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 506–577 (2002). doi:10.1128/MMBR.66.3.506-577.2002. table of contents

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensheng Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, H.K., Xu, C. & Qin, W. Biological Pretreatment of Lignocellulosic Biomass for Biofuels and Bioproducts: An Overview. Waste Biomass Valor 10, 235–251 (2019). https://doi.org/10.1007/s12649-017-0059-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0059-y

Keywords

Navigation