Skip to main content
Log in

Kantowski–Sachs viscous Ricci dark energy model in Saez–Ballester theory of gravitation

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we examine the spatially homogeneous and anisotropic Kantowski–Sachs (KS) space–time with viscous Ricci dark energy in the framework of Saez and Ballester (Phys Lett A 113:467, 1986) scalar tensor theory of gravitation. To solve the field equations, we use (i) the relationship between metric potentials which is obtained from the condition that shear scalar of the model is proportional to the expansion scalar and (ii) the relationship between average scale factor (a(t)) and bulk viscous coefficient \((\xi )\) as \(\xi =\xi _0+\xi _1\big (\frac{\dot{a}}{a}\big )+\xi _2\big (\frac{\ddot{a}}{\dot{a}}\big )\), where \(\xi _0\), \(\xi _1\) and \(\xi _2\) are constants. Some well-known cosmological implications such as deceleration parameter, equation of state parameter, statefinder and Om diagnostic parameters of the model are constructed and analyzed through graphical representation. It is also observed that the KS viscous Ricci dark energy model presented here is compatible with the current cosmological observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A G Riess et al. Astron. J 116 1009 (1998)

    Article  ADS  Google Scholar 

  2. S Permutter et al. Nature 391 51 (1998)

    Article  ADS  Google Scholar 

  3. S Perlmutter G Aldering et al. Astrophys. J. 517 565 (1999)

    Article  ADS  Google Scholar 

  4. S Weinberg Rev. Mod. Phys. 61 1 (1989)

  5. E J Copeland et al. Int. J. Mod. Phys. D 15 1753 (2006)

    Article  ADS  Google Scholar 

  6. P J E Peebles et al. Astrophys. J. Lett. 325 117 (1988)

    Article  Google Scholar 

  7. R R Caldwell et al. Phys. Rev. Lett. 80 1582 (1998)

    Article  ADS  Google Scholar 

  8. B Ratra et al. Phys. Rev. D 37 3406 (1988)

    Article  ADS  Google Scholar 

  9. S M Carroll Phys. Rev. Lett. 81 3067 (1998)

  10. M S Turner Int. J. Mod. Phys. A 17 180 (2002)

  11. C Armendariz-Picon et al. Phys. Lett. 85 4438 (2000)

    Article  Google Scholar 

  12. T Chiba et al. Phys. Rev. D 62 023511 (2000)

    Article  ADS  Google Scholar 

  13. A Sen J. High Energy Phys. 07 065 (2002)

  14. T Padmanabhan Phys. Rev. D 66 021301 (2002)

  15. R R Caldwell Phys. Lett. B 545 23 (2002)

  16. A Kamenshchik et al. Phys. Lett. B 511 265 (2001)

    Article  ADS  Google Scholar 

  17. S D H Hsu Phys. Lett. B 594 13 (2004)

  18. M Li Phys. Lett. B 603 1 (2004)

  19. R G Cai Phys. Lett. B 657 228 (2007)

  20. H Wei et al. Phys. Lett. B 660 113 (2008)

    Article  ADS  Google Scholar 

  21. C H Brans and R H Dicke Phys. Rev. 124 925 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  22. D Saez and V J Ballester J. Phys. Lett. A 113 467 (1986)

    Article  ADS  Google Scholar 

  23. G t’Hooft Con. Proc. C 930308 284 (1993)

  24. L Susskind J. Math. Phys. 36 6377 (1995)

  25. W Fischler and L Susskind, arXiv:hep-th/9806039 (1998)

  26. Y Gong Phys. Rev. D 70 064029 (2004)

  27. B Wang, Y Gong et al. Phys. Lett. B 624 141 (2005)

    Article  ADS  Google Scholar 

  28. X Zhang Int. J. Mod. Phys. D 14 1597 (2005)

  29. D Pavon and W Zimdahl, arXiv:hep-th/0511053 (2005)

  30. C Gao et al. Phys. Rev. D 79 043511 (2009)

    Article  ADS  Google Scholar 

  31. C J Feng Phys. Lett. B 670 231 (2008)

  32. M Bouhmadi-López and Y Tavakoli Phys. Rev. D 87 023515 (2013)

    Article  ADS  Google Scholar 

  33. M Suwa et al. J. Mod. Phys. 6 327 (2015)

    Article  Google Scholar 

  34. S Ghaffari et al. Phys. Rev. D 91 023007 (2015)

    Article  ADS  Google Scholar 

  35. Huang and Li J. Cosmol. Astropart. Phys. 2004 013 (2004)

  36. X Zhang and F Q Wu Phys. Rev. D 72 043524 (2005)

    Article  ADS  Google Scholar 

  37. L N Granda and A Oliveros Phys. Lett. B 669 275 (2008)

    Article  ADS  Google Scholar 

  38. C W Misner Nature 214 40 (1967)

  39. C W Misner Astrophys. J. 151 431 (1968)

  40. Shri Ram et al. J. Modern Phys. 3 9 (2012)

    Article  ADS  Google Scholar 

  41. V U M Rao et al. Iran. J. Phys. Res. 18 3 (2018)

    Google Scholar 

  42. M V Santhi et al. Can. J. Phys. 96 1 (2018)

    Article  Google Scholar 

  43. M V Santhi et al. J. Phys. Conf. Ser. 1344 012038 (2019)

    Article  Google Scholar 

  44. R K Mishra and H Dua Astrophys. Space. Sci. 364 195 (2019)

    Article  ADS  Google Scholar 

  45. Sinha et al. nt. J. Geom. Methods Mod. Phys. 16 11 1950176 (2019)

  46. Karmakar et al. New Astron. 76 101321 (2020)

  47. Chakraborty et al. arXiv:2006.07142 (2020)

  48. S Sarkar et al. Int. J. Theor. Phys. 52 1482 (2013)

    Article  Google Scholar 

  49. S Sarkar Astrophys. Space. Sci. 349 985 (2014)

  50. K S Adhav et al. Astrophys. Space. Sci. 359 24 (2015)

    Article  ADS  Google Scholar 

  51. D R K Reddy et al. Prespacetime, J. 7 315 (2016)

    Google Scholar 

  52. V U M Rao and U Y Divya Prasanthi Afr. Rev. Phys. 11 0001 (2016)

    Google Scholar 

  53. M V Santhi et al. Can. J. Phys 95 2 (2017)

    Google Scholar 

  54. M P V V Bhaskar Rao et al. Can. J. Phys. 5 96 555 (2017)

  55. M V Santhi et al. Astrophys. Space. Sci. 361 142 (2016)

    Article  ADS  Google Scholar 

  56. M V Santhi et al. Can. J. Phys. 95 578 (2016)

    Article  ADS  Google Scholar 

  57. V U M Rao and U Y Divya Prasanthi Eur. Phys. J. Plus 132 64 (2017)

    Article  Google Scholar 

  58. S Chattopadhyay, 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), New Delhi, India, 2019, p. 1, https://doi.org/10.23919/URSIAP-RASC.2019.8738190

  59. K Dasunaidu et al. Astrophys. Space. Sci. 363 7 (2018)

    Article  MathSciNet  Google Scholar 

  60. A Pradhan et al. Int. J. Geom. Methods Mod. Phys. 16 1950185 (2019)

    Article  MathSciNet  Google Scholar 

  61. M Cataldo et al. Phys. Lett. B 619 5 (2005)

    Article  ADS  Google Scholar 

  62. C J Feng et al. Phys. Lett. B 680 355 (2009)

    Article  ADS  Google Scholar 

  63. C P Singh et al. Eur. Phys. J. Plus 133 312 (2018)

  64. C P Singh et al. Astrophys. Space. Sci. 94 364 (2019)

    Google Scholar 

  65. J R Wilson et al. Phys. Rev. D 75 043525 (2007)

    Article  ADS  Google Scholar 

  66. C B Collins et al. Gen. Relativ. Gravit. 12 805 (1980)

    Article  ADS  Google Scholar 

  67. J Ren and X H Meng Int. J.Mod. Phys. D 16 1341 (2007)

    Article  ADS  Google Scholar 

  68. N Aghanim et al. [Plancks Collaboration] arXiv:1807.06209v2 (2018)

  69. V Sahni et al. J. Exp. Theor. Phys Lett. 77 201 (2003)

    Article  Google Scholar 

  70. V Sahni et al. Phys. Rev. D 78 103502 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M V Santhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santhi, M.V., Sobhanbabu, Y. Kantowski–Sachs viscous Ricci dark energy model in Saez–Ballester theory of gravitation. Indian J Phys 96, 1867–1875 (2022). https://doi.org/10.1007/s12648-021-02121-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02121-1

Keywords

Navigation