Skip to main content
Log in

Study of the spectral and power characteristics of In0.2Ga0.8N/GaN superluminescent light-emitting diodes by taking into account the piezoelectric polarization fields

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this study, the effects of the piezoelectric polarization field have been investigated on the spectral and power characteristics of In0.2Ga0.8N/GaN superluminescent light-emitting diodes. The Schrödinger and Poisson equations, the rate equations in the multiple quantum well active region and separate confinement heterostructure layers, and the optical propagating equations have been solved in the presence of the piezoelectric field. The results have been compared with results of the case of without piezoelectric field. According to the results, in the presence of piezoelectric field, the red-shift occurs in the spectra, and the width of spectrum increases. Also, the piezoelectric field decreases the peak intensity of spectrum and modal gain of the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M Willatzen, B Lassen, L C Lew Yan Voon and R V N Melnik J. Appl. Phys. 100 024302 (2006)

  2. S H Park Jpn. J. Appl. Phys. 42 5052 (2003)

  3. W Z Tawfik, G Y Hyun, S W Ryu, J S Ha and J K Lee Opt. Mater. 55 17 (2016)

  4. M H Kim et al. Appl. Phys. Lett. 91 183507 (2007)

  5. Z Zang et al. IEEE Phot. Tech. Lett. 22 721 (2010)

  6. D S Mamedov, V V Prokhorov and S D Yakubovich Quantum Electron. 33 471 (2003)

  7. S Chen et al. Nanoscale Res. Lett. 10 340 (2015)

  8. K Bohnert, P Gabus, J Nehring and H. Brandle J. Lightwave Technol. 20 267 (2002)

  9. T H Ko et al. Opt. Express 12 2112 (2004)

  10. G R Goldberg et al. IEEE Journal of Selected Topics in Quantum Electronics 23 2000511 (2017)

  11. W Z Tawfik, H Y Ryu and J K Lee C. Appl. Phys. 14 1504 (2014)

  12. C Shen et al. Opt. Lett. 41 2608 (2016)

  13. A Kafar et al. Opt. Express 24 9673 (2016)

  14. M T Hardy et al. Appl. Phys. Express 2 121004 (2009)

  15. K Holc et al. J. Appl. Phys. 108 013110 (2010)

  16. N M Milani, V Mohadesi and A Asgari J. Appl. Phys. 117 054502 (2015)

  17. H Absalan, M M Golzan and N M Milani, Iran J. Sci. Technol. Trans Sci. 44 1259 (2020)

  18. H. Ryu Jpn. J. Appl. Phys. 51 09MK03 (2012)

  19. O Mayrock, H J Wunsche and F. Henneberger Phys. Rev. B 62 16870 (2000)

  20. H Zhao, R A Arif and N. Tansu IEEE J. Selected Topics in Quantum Electronics 15 1104 (2009)

  21. E T Yu, X Z Dang, P M Asbeck, S S Lau and G J Sullivan J. Vac. Sci. Technol. B 17 1742 (1999)

  22. I Vurgaftman and J R Meyer J. Appl. Phys. 94 3674 (2003)

  23. A Polian, M Grimsditch and I. Grzegory J. Appl. Phys. 79 3343 (1996)

  24. D R Elsaesser, M T Durniak, A S Bross and Ch. Wetzel J. Appl. Phys. 122 115703 (2017)

  25. T Takeuchi et al. Jpn. J. Appl. Phys. 97, 382 (1997)

  26. W J Fan, S F Yoon, M F Li and T C Chong Physica B 328 264 (2003)

  27. P. Navaeipour and A. Asgari Physica E 63 272 (2014)

  28. E F Schubert Light-Emitting Diodes (New York: Cambridge University Press) (2006)

  29. N M Milani and A Asgari Physica E 69 165 (2015)

  30. G Muziol, H Turski, M Siekacz, M Sawicka, P Wolny, P Perlin and C. Skierbiszewski Appl. Phys. Lett. 103 061102 (2013)

  31. M Zhang, P Bhattacharya, J Singh and J Hinckley Appl. Phys. Lett. 95 201108 (2009)

  32. H Yoshida, M Kuwabara, Y Yamashita, K Uchiyama and H Kan Appl. Phys. Lett. 96 211122 (2010)

  33. S Ahmad, M A Raushan, Sh Kumar, S Dalela, M J Siddiqui and P A Alvi Optik 158 1334 (2018)

  34. A Asgari and S Dashti Optik 123 1546 (2012)

  35. J Piprek Semiconductor Optoelectronic Devices, Introduction to Physics and Simulation (New York: Elsevier Science) (2003)

  36. H Zhao, R A Arif, Y K Ee and N. Tansu IEEE J. Quantum Electron. 45 66 (2009)

  37. S H Park and Y T Moon J. Appl. Phys 114 083107 (2013)

  38. W Z Tawfik, G Y Hyeon and J K Lee J. Appl. Phys. 116 164503 (2014)

  39. B Arnaudov, D S Domanevskii, S Evtimova, Ch Ivanov and R Kakanakov Microelectronics Journal 40 346 (2009)

  40. A B M H Islam, J I Shim and D S Shin Materials 11 743 (2018)

  41. E Jung, S Kim and S Kim C. Appl. Phys. 12 885 (2012)

  42. F Kopp et al. Jpn. J. Appl. Phys. 52 08JH07 (2013)

  43. T Mukai, M Yamada and Sh. Nakamura Jpn. J. Appl. Phys. 38 3976 (1999)

  44. C Lu et al. J. App. Phys. 113 013102 (2013)

  45. C K Wang, Y Z Chiou, T H Chiang and T K Lin Int. J. Pho. 2015 135321 (2015)

  46. V Sheremet et al. Superlattices and Microstructures 116 253 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Absalan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Absalan, H., Golzan, M.M. & Moslehi Milani, N. Study of the spectral and power characteristics of In0.2Ga0.8N/GaN superluminescent light-emitting diodes by taking into account the piezoelectric polarization fields. Indian J Phys 96, 1821–1828 (2022). https://doi.org/10.1007/s12648-021-02105-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02105-1

Keywords

Navigation