Skip to main content
Log in

Gastrointestinal parasites in the opossum Didelphis aurita: Are they a potential threat to human health?

  • Original Article
  • Published:
Journal of Parasitic Diseases Aims and scope Submit manuscript

Abstract

Currently, a great proportion of the emerging infectious human diseases are zoonotic, with most of the pathogens originated from wildlife. In this sense, synanthropic animals such as marsupials play important role in the dissemination of pathogens due to their proximity to human dwellings. These hosts are affected by many gastrointestinal parasites, including species with zoonotic potential. The aim of this study was to assess the diversity of gastrointestinal parasites infecting the black-eared opossum D. aurita captured in urban areas of Southeastern, Brazil. In addition, the potential risk for the human population based on the One Health perspective has been discussed. Forty-nine marsupial specimens were captured with Tomahawk live traps and fecal samples were collected. The samples were evaluated by parasitological procedures. Eggs and oocysts were analyzed at different magnifications (400 × and 1000 ×), and their identification, together with adult nematodes, was established on morphological and morphometric data. Forty-three hosts (87.76%) scored positive for at least one gastrointestinal parasite, being 83.67% (41/49) for helminths, and 65.30% (32/49) for protozoa. For Cryptosporidium sp., only 13 samples were evaluated due to insufficient amount of feces obtained of some animals. A prevalence of 23.08% (3/13) was reported for this parasite. PCR analysis revealed Ancylostomatidae eggs to belong to the genus Ancylostoma. Our results demonstrated that multiparasitism is frequently found in these animals and a high percentage of potentially zoonotic parasites are observed, implying that D. aurita may be involved in zoonotic cycles in urban environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adnet FAO, Anjos DHS, Menezes-Oliveira A, Lanfredi RM (2009) Further description of Cruzia tentaculata (Rudolphi, 1819) Travassos, 1917 (Nematoda: Cruzidae) by light and scanning electron microscopy. Parasitol Res 104:1207–1211

    CAS  PubMed  Google Scholar 

  • Alden KJ (1995) Helminths of the opossum, Didelphis virginiana, in Southern Illinois, with a compilation of all helminths reported from this host in north America. J Helminthol Soc Wash 62(2):197–208

    Google Scholar 

  • Anderson RC (2000) Nematode parasites of vertebrates. Their development and transmission. CABI Publishing, Wallingford

    Google Scholar 

  • Aragón-Pech RA, Ruiz-Piña HÁ, Rodríguez-Vivas RI, Cuxim-Koyoc AD, Reyes-Novelo E (2018) Prevalence, abundance and intensity of eggs and oocysts of gastrointestinal parasites in the opossum Didelphis virginiana Kerr, 1792 in Yucatan, Mexico. Helminth 55(2):119–126

    Google Scholar 

  • Batchelor DJ, Tzannes S, Graham PA, Wastling JM, Pinchbeck GL, German AJ (2008) Detection of endoparasites with zoonotic potential in dogs with gastrointestinal disease in the UK. Transbound Emerg Dis 55:99–104

    CAS  PubMed  Google Scholar 

  • Bermúdez SE, Gottdenker N, Krishnvajhala A, Fox A, Wilder HK, González K, Smith D, López M, Perea M, Rigg C, Montilla S, Calzada JE, Saldaña A, Caballero CM, Lopez JE (2017) Synanthropic mammals as potential hosts of tick-borne pathogens in panama. PLoS ONE 12(1):e0169047

    PubMed  PubMed Central  Google Scholar 

  • Bouzid M, Hunter PR, Chalmers RM, Tyler KM (2013) Cryptosporidium Pathogenicity and Virulence. Clin Microbiol Rev 26(1):115–134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman DD (2010) Georgis parasitologia veterinaria. Elsevier, Rio de Janeiro

    Google Scholar 

  • Butcher AR, Grove DI (2001) Description of the life-cycle stages of Brachylaima cribbi n. sp. (Digenea: Brachylaimidae) derived from eggs recovered from human faeces in Australia. Syst Parasitol 49:211–221

    CAS  PubMed  Google Scholar 

  • Cáceres NC, Monteiro-Filho ELA (2001) Food Habits, Home Range and Activity of Didelphis aurita (Mammalia, Marsupialia) in a Forest Fragment of Southern Brazil. Stud Neotrop Fauna E 36(2):85–92

    Google Scholar 

  • Cantor M, Ferreira LA, Silva WR, Setz EZF (2010) Potential seed dispersal by Didelphis albiventris (Marsupialia, Didelphidae) in highly disturbed environment. Biota Neotrop 10(2):45–51

    Google Scholar 

  • Ceotto P, Finotti R, Santori R, Cerqueira R (2009) Diet variation of the marsupails Didelphis aurita and Philander frenatus (Didelphimorphia, Didelphidae) in a rural area of Rio de Janeiro State, Mexico. Mastozool Neotrop 16(1):49–58

    Google Scholar 

  • Costa-Neto SF, Cardoso TS, Boullosa RG, Maldonado A Jr, Gentile R (2018) Metacommunity structure of the helminths of the black-eared opossum Didelphis aurita in peri-urban, sylvatic and rural environments in south-eastern Brazil. J Helminthol 17:1–12

    Google Scholar 

  • Cutler SJ, Fooks AR, Van der Poel WHM (2010) Public health threat of new, reemerging, and neglected zoonoses in the industrialized world. Emerg Infect Dis 16(1):1–7

    PubMed  PubMed Central  Google Scholar 

  • Duszynski DW (2016) The biology and identification of the coccidia (Apicomplexa) of marsupials of the world. Academic Press, Elsevier, San Diego and Waltham

    Google Scholar 

  • Duszynski D, Wilber PG (1997) A guideline for the preparation of species descriptions in the eimeriidae. J Parasitol 83(2):333–336

    CAS  PubMed  Google Scholar 

  • Elliot A, Morgan UM, Aworew Thompson RC (1999) Improved staining method for detecting Cryptosporidium oocysts in stools using malachite green. J Gen Appl Microbiol 45:139–142

    CAS  PubMed  Google Scholar 

  • Ernst JV, Cooper C, Chobotar B (1969) Isospora boughtoni Volk, 1938 and Isospora sp. (Protozoa: Eimeridae) from an opossum Didelphis marsupialis. Bull Wildlife Dis 5:406–409

    CAS  Google Scholar 

  • Feldmeier H, Schuster A (2012) Mini review: hookworm-related cutaneous larva migrans. Eur J Clin Microbiol Infect Dis 31:915–918

    CAS  PubMed  Google Scholar 

  • Furtado LF, Bello AC, Dos Santos HA, Carvalho MR, Rabelo ÉM (2014) First identification of the F200Y SNP in the β-tubulin gene linked to benzimidazole resistance in Ancylostoma caninum. Vet Parasitol 206(3–4):313–316

    CAS  PubMed  Google Scholar 

  • Gardner AL (2008) Mammals of South America, Volume I. Marsupials, xenarthrans, shrews, and bats. The University of Chicago Press, Chicago and London

  • Haverkost TR, Gardner SL (2008) A review of species in the genus Rhopalias (Rudolphi. J Parasitol 94(3):716–726

    PubMed  Google Scholar 

  • Joseph T (1974) Eimeria indianensis sp. n. and an Isospora sp. from the Opossum Didelphis virginiana (Kerr). J Protozool 21(1):12–15

    CAS  PubMed  Google Scholar 

  • Kawazoe U, Dias LCS, Piza JT (1978) Infecção natural de pequenos mamíferos por Schistosoma mansoni, na represa de Americana (São Paulo, Brasil). Rev Saúde Publ 12:200–208

    CAS  Google Scholar 

  • Lainson R, Shaw JJ (1989) Two new species of Eimeria and three new species of Isospora Apicomplexa, Eimeriidae) from Brazilian mammals and birds. Bull Mus Hist Nat Paris 11(2):349–365

    Google Scholar 

  • Lake SL, Matthews JB, Kaplan RM, Hodgkinson JE (2009) Determination of genomic DNA sequences for beta-tubulin isotype 1 from multiple species of cyathostomin and detection of resistance alleles in third-stage larvae from horses with naturally acquired infections. Parasit Vectors 2(2):S6

    PubMed  PubMed Central  Google Scholar 

  • Lindsay DS, Dubey JP, Blagburn BL (1997) Biology of Isospora spp. from humans, nonhuman primates, and domestic animals. Clin Microbiol Rev 10(1):19–34

    CAS  PubMed  PubMed Central  Google Scholar 

  • López-Caballero J, Mata-López R, De León GP (2019) Molecular data reveal a new species of Rhopalias Stiles & Hassall, 1898 (Digenea, Echinostomatidae) in the Common opossum, Didelphis marsupialis L. (Mammalia, Didelphidae) in the Yucatán Peninsula, Mexico. Zookey 854:145–163

    Google Scholar 

  • Lucheis SB, Hernandes GS, Lenharo DK, Santiago MEB, Baldini-Peruca LC (2009) Are opossums capable of transmitting leptospirosis in urban areas? J Venom Anim Toxins Incl Trop Dis 15(3):370–373

    Google Scholar 

  • Mateus TL, Castro A, Ribeiro JN, Vieira-Pinto M (2014) Multiple zoonotic parasites identified in dog feces collected in ponte de Lima, Portugal—a potential threat to human health. Int J Environ Res Public Health 11:9050–9067

    PubMed  Google Scholar 

  • McFarlane RO, Sleigh A, McMichael T (2012) Synanthropy of wild mammals as a determinant of emerging infectious diseases in the Asian–Australasian region. Eco Healt 9:24–35

    Google Scholar 

  • Morgan JAT, Dejong RJ, Snyder SD, Mkoji GM, Loker ES (2001) Schistosoma mansoni and Biomphalaria: past history and future trends. Parasitol 123:S211–S228

    Google Scholar 

  • Morrant DS, Petit S, Schumann R (2010) Floral nectar sugar composition and flowering phenology of the food plants used by the western pygmy possum, Cercartetus concinnus, at Innes National Park, South Australia. Ecol Res 25:579–589

    Google Scholar 

  • Noronha D, Vicente JJ, Pinto RM (2002) A survey of new host records for nematodes from mammals deposited in the Helminthological Collection of the Oswaldo Cruz Institute (CHIOC). Rev Bras Zool 19(3):945–949

    Google Scholar 

  • Oryan A, Sadjjadi SM, Mehrabani D, Kargar M (2008) Spirocercosis and its complications in stray dogs in Shiraz, southern Iran. Vet Med 53(11):617–624

    Google Scholar 

  • Pereira AAS, Ferreira EC, Lima ACVMDR, Tonelli GB, Rêgo FD, Paglia AP, Andrade-Filho JD, Paz GF, Gontijo CMF (2017) Detection of Leishmania spp. in sylvatic mammals and isolation of Leishmania (Viannia) braziliensis from Rattus rattus in an endemic area for leishmaniasis in Minas Gerais State, Brazil. PLoS ONE 12(11):e0187704

    PubMed  PubMed Central  Google Scholar 

  • Pinto CM, Ocaña-Mayorga S, Lascano MS, Grijalva MJ (2006) Infection by trypanosomes in marsupials and rodents associated with human dwellings in Ecuador. J Parasitol 92(6):1251–1255

    PubMed  Google Scholar 

  • Pinto HA, Mari VLT, Melo AL (2014) Toxocara cati (Nematoda: Ascarididae) in Didelphis albiventris (Marsupialia: Didelphidae) from Brazil: a case of pseudoparasitism. Braz J Vet Parasitol 23(4):522–525

    CAS  Google Scholar 

  • Richardson DJ, Campo JD (2005) Gastrointestinal helminths of the virginia opossum (Didelphis virginiana) in South-Central Connecticut, USA. Comp Parasitol 72(2):183–185

    Google Scholar 

  • Sahimin N, Lim YAL, Douadi B, Mohd Khalid MKN, Wilson JJ, Behnke JM, Mohd Zain SN (2017) Hookworm infections among migrant workers in Malaysia: Molecular identification of Necator americanus and Ancylostoma duodenale. Acta Trop 173:109–115

    CAS  PubMed  Google Scholar 

  • Teixeira M, Rauta PD, Albuquerque GR, Lopes CWG (2007) Eimeria auritanensis n. sp. and E. gambai Carini, 1938 (Apicomplexa: Eimeriidae) from the opossum Didelphis aurita Wied-newied, 1826 (Marsupialia: Didelphidae) from southeastern Brazil. Rev Bras Parasitol Vet 16(2):83–86

    PubMed  Google Scholar 

  • Telfer S, Lambin X, Birtles R, Beldomenico P, Burthe S, Paterson S, Begon M (2010) Species interactions in a parasite community drive infection risk in a wildlife population. Scienc 330:243–246

    CAS  Google Scholar 

  • Teodoro AKM, Cutolo AA, Motoie G, Meira-Strejevitch CS, Pereira-Chioccola VL, Mendes TMF, Allegretti SM (2019) Gastrointestinal, skin and blood parasites in Didelphis spp. from urban and sylvatic areas in São Paulo state, Brazil. Vet Parasitol Reg Stud Rep 16:100286

    Google Scholar 

  • Thamsborg SM, Ketzis J, Horii Y, Matthews JB (2016) Strongyloides spp. infections of veterinary importance. Parasitol 144(3):274–284

    Google Scholar 

  • Thompson RCA (2013) Parasite zoonoses and wildlife: one health, spillover and human activity. Int J Parasitol 43:1079–1088

    PubMed  PubMed Central  Google Scholar 

  • Uehlinger FD, Greenwood SJ, McClure JT, Conboy G, O’Handley R, Barkema HW (2013) Zoonotic potential of Giardia duodenalis and Cryptosporidium spp. and prevalence of intestinal parasites in young dogs from different populations on Prince Edward Island, Canada. Vet Parasitol 196:509–514

    PubMed  Google Scholar 

  • Vaumourin E, Vourc’h G, Gasqui P, Vayssier-Taussat M (2015) The importance of multiparasitism: examining the consequences of coinfections for human and animal health. Parasite Vector 8:545

    Google Scholar 

  • Viney ME, Lok JB (2015) The biology of Strongyloides spp. The C. elegans Research Community (ed) WormBook,. doi/https://doi.org/10.1895/wormbook.1.141.2, http://www.wormbook.org

  • Willis HH (1921) A simple levitation method for the detection of hookworm ova. Med J Aust 8:375–378

    Google Scholar 

  • Youn H (2009) Review of zoonotic parasites in medical and veterinary fields in the Republic of Korea. Korean J Parasitol 47:S133–S141

    PubMed  PubMed Central  Google Scholar 

  • Zanette RA, Silva AS, Lunardi F, Santurio JM, Monteiro SG (2008) Occurrence of gastrointestinal protozoa in Didelphis albiventris (opossum) in the central region of Rio Grande do Sul state. Parasitol Int 57(2):217–218

    PubMed  Google Scholar 

  • Zuccherato LW, Furtado LF, Medeiros CS, Pinheiro CS, Rabelo ÉM (2018) PCR-RFLP screening of polymorphisms associated with benzimidazole resistance in Necator americanus and Ascaris lumbricoides from different geographical regions in Brazil. PLoS Negl Trop Dis 12(9):e0006766

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), and the Graduate Program in Veterinary Medicine of the Universidade Federal de Viçosa (UFV) for the support provided. Finally, authors would like to thank Professor Gisele M. L. del Giúdice for providing traps to capture the animals.

Author information

Authors and Affiliations

Authors

Contributions

MABS, CSF and BCFN collected samples and performed laboratory procedures. LFVF and EMLR performed the molecular procedures. AKC, RANR and RSY supervised the study. MABS, RSY and JAG analyzed the data. MABS wrote the first draft of the manuscript. AKC, RANR, RSY, LFVF, EMLR and JVA revised and performed corrections on the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Marcos Antônio Bezerra-Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The Ethics Committee for Animal Experimentation (ECAE) of the Universidade Federal de Viçosa (License Number: 80/2018) and the Biodiversity Information and Authorization System (SISBIO) (License Number: 64930-1) of the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA) approved all procedures herein performed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezerra-Santos, M.A., Fontes, C.S., Nogueira, B.C.F. et al. Gastrointestinal parasites in the opossum Didelphis aurita: Are they a potential threat to human health?. J Parasit Dis 44, 355–363 (2020). https://doi.org/10.1007/s12639-020-01205-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12639-020-01205-9

Keywords

Navigation