Skip to main content
Log in

Enhanced microstructural and mechanical properties of Stellite/WC nanocomposite on Inconel 718 deposited through vibration-assisted laser cladding

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Stellite-21/WC nanopowders were deposited on Inconel through vibration-assisted laser cladding with different laser parameters. Optical and scanning electron microscopy, hardness measurements, and wear characterizations were employed to understand the microstructural and mechanical behaviors of the nanocomposites. Results showed that varying the cooling rate exerted remarkable effects on the microstructure of the as-cladded composites. Moreover, increasing the laser power from 150 W to 250 W increased the heat input and the dilutions. Dilution was affected by the scanning rate and powder feeding rate at a high laser power of 250 W. When WC nanoparticles were added as reinforcement, the dilution magnitude intensified while the hardness value increased from HV 350 to HV 700. The wear characterizations indicated that the composites containing 3wt% WC nanoparticles possessed the highest wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.C. Zhang, Z.G. Li, P.L. Nie, and Y.X. Wu, Carbide and nitride precipitation during laser cladding of Inconel 718 alloy coatings, Opt. Laser Technol., 52(2013), p. 30.

    Article  CAS  Google Scholar 

  2. C.L. Zhong, A. Gasser, J. Kittel, K. Wissenbach, and R. Poprawe, Improvement of material performance of Inconel 718 formed by high deposition-rate laser metal deposition, Mater. Des., 98(2016), p. 128.

    Article  CAS  Google Scholar 

  3. R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2008.

    Google Scholar 

  4. S.M. Rafiaei, J.H. Kim, and S. Kang, Effect of nitrogen and secondary carbide on the microstructure and properties of (Ti0.93W0.07)C—Ni cermets, Int. J. Refract. Met. Hard Mater., 44(2014), p. 123.

    Article  CAS  Google Scholar 

  5. S.M. Rafiaei, A. Bahrami, and M. Shokouhimehr, Influence of Ni/Co binders and Mo2C on the microstructure evolution and mechanical properties of (Ti0.93W0.07)C-based cermets, Ceram. Int., 44(2018), No. 15, p. 17655.

    Article  CAS  Google Scholar 

  6. B. Li, Y. Jin, J.H. Yao, Z.H. Li, and Q.L. Zhang, Solid-state fabrication of WCp-reinforced Stellite-6 composite coatings with supersonic laser deposition, Surf. Coat. Technol., 321(2017), p. 386.

    Article  CAS  Google Scholar 

  7. D. Bartkowski, A. Młynarczak, A. Piasecki, B. Dudziak, M. Gościański, and A. Bartkowska, Microstructure, microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding, Opt. Laser Technol., 68(2015), p. 191.

    Article  CAS  Google Scholar 

  8. D. Bartkowski and G. Kinal, Microstructure and wear resistance of Stellite-6/WC MMC coatings produced by laser cladding using Yb: YAG disk laser, Int. J. Refract. Met. Hard Mater., 58(2016), p. 157.

    Article  CAS  Google Scholar 

  9. S. Buytoz, M. Ulutan, and M.M. Yildirim, Dry sliding wear behavior of TIG welding clad WC composite coatings, Appl. Surf. Sci., 252(2005), No. 5, p. 1313.

    Article  CAS  Google Scholar 

  10. X.K. Deng, G.J. Zhang, T. Wang, S. Ren, Q. Cao, Z.L. Bai, and Z.N. Liu, Microstructure and wear resistance of Mo coating deposited by plasma transferred arc process, Mater. Charact., 131(2017), p. 517.

    Article  CAS  Google Scholar 

  11. M. Ashja and M.M. Verdian, Al—Cu—Fe coatings manufactured by the flame spraying process, Mater. Manuf. Process., 32(2017), No. 4, p. 383.

    Article  CAS  Google Scholar 

  12. H. Hosseini-Tayeb and S.M. Rafiaei, Effects of lateral and vertical ultrasonic vibrations on the microstructure and microhardness of Stellite-6 coating deposited on Inconel 718 superalloy through laser metal deposition, Mater. Res. Express, 7(2020), No. 1, art. No. 016531.

  13. G. Bonizzoni and E. Vassallo, Plasma physics and technology; industrial applications, Vacuum, 64(2002), No. 3–4, p. 327.

    Article  CAS  Google Scholar 

  14. J.H. Chen, P.N. Chen, C.M. Lin, C.M. Chang, Y.Y. Chang, and W. Wu, Microstructure and wear properties of multicomponent alloy cladding formed by gas tungsten arc welding (GTAW), Surf. Coat. Technol., 203(2009), No. 20–21, p. 3231.

    Article  CAS  Google Scholar 

  15. Q.J. Zheng and R. Vasinko, DuraStell PTA cladding for wear application, [in] S.J. Wang, M.L. Free, S. Alam, M.M. Zhang, and P.R. Taylor, eds., Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies. Springer, Cham, 2017, p. 345.

    Chapter  Google Scholar 

  16. W.T. Chen and E.C. Dickey, Crystallographic orientation relationships and interfaces in laser-processed directionally solidified WC-W2C eutectoid ceramics, J. Mater. Sci., 51(2016), No. 9, p. 4371.

    Article  CAS  Google Scholar 

  17. L. Santo, Laser cladding of metals: A review, Int. J. Surf. Sci. Eng., 2(2008), No. 5, art. No. 327.

  18. E. Toyserkani, A. Khajepour, and S.F. Corbin, Laser Cladding, CRD Press, Boca Raton, 2004.

    Book  Google Scholar 

  19. N. Shamsaei, A. Yadollahi, L.K. Bian, and S.M. Thompson, An overview of direct laser deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control, Addit. Manuf., 8(2015), p. 12.

    Google Scholar 

  20. S.R. More, D.V. Bhatt, and J.V. Menghani, Resent research status on laser cladding as erosion resistance technique — An overview, Mater. Today: Proc., 4(2017), No. 9, p. 9902.

    Google Scholar 

  21. J. Huebner, P. Rutkowski, D. Kata, and J. Kusiński, Microstructural and mechanical study of inconel 625 — tungsten carbide composite coatings obtained by powder laser cladding, Arch. Metall. Mater., 62(2017), No. 2, p. 531.

    Article  CAS  Google Scholar 

  22. T. Kunimine, R. Miyazaki, Y. Yamashita, Y. Funada, Y. Sato, and M. Tsukamoto, Cladding of stellite-6/WC composites coatings by laser metal deposition, Mater. Sci. Forum, 941(2018), p. 1645.

    Article  Google Scholar 

  23. M.L. Zhong, K.F. Yao, W.J. Liu, J.C. Goussain, C. Mayer, and A. Becker, High-power laser cladding Stellite 6+WC with various volume rates, J. Laser Appl., 13(2001), No. 6, p. 247.

    Article  CAS  Google Scholar 

  24. O. Yılmaz and S. Buytoz, Abrasive wear of Al2O3-reinforced aluminium-based MMCs, Compos. Sci. Technol., 61(2001), No. 16, p. 2381.

    Article  Google Scholar 

  25. M. Karbalaei Akbari, O. Mirzaee, and H.R. Baharvandi, Fabrication and study on mechanical properties and fracture behavior of nanometric Al2O3 particle-reinforced A356 composites focusing on the parameters of vortex method, Mater. Des., 46(2013), p. 199.

    Article  CAS  Google Scholar 

  26. M. Mabuchi and K. Higashi, Strengthening mechanisms of Mg—Si alloys, Acta Mater., 44(1996), No. 11, p. 4611.

    Article  CAS  Google Scholar 

  27. M. Hajizamani and M. Alizadeh, Modification of microstructure and mechanical properties of Al—Zn—Mg/3 wt.% Al2O3 composite through semi-solid thermomechanical processing using variable loads, Int. J. Mater. Res., 108(2017), No. 10, p. 840.

    Article  CAS  Google Scholar 

  28. M. Hajizamani, M. Alizadeh, A. Alizadeh, and S.A. Jenabali-Jahromi, Role of melt percentage on characteristics of Al-Zn-Mg/3 wt.% Al2O3 nanostructured composite modified through semi-solid thermomechanical processing, Mater. Res. Express, 5(2018), No. 2, art. No. 026520.

  29. M. Hajizamani, M. Alizadeh, A. Alizadeh, and M. Karamouz, A comparative study on characteristics of nanostructured Al-Zn-Mg/3 wt% Al2O3 composites synthesized through solidstate sintering and semi-solid thermomechanical processing, Mater. Res. Express, 6(2019), No. 6, art. No. 066520.

  30. S. Amirkhanlou, M.R. Rezaei, B. Niroumand, and M.R. Toroghinejad, Refinement of microstructure and improvement of mechanical properties of Al/Al2O3 cast composite by accumulative roll bonding process, Mater. Sci. Eng. A, 528(2011), No. 6, p. 2548.

    Article  Google Scholar 

  31. J.R. Davis, Surface Engineering for Corrosion and Wear Resistance, ASM international, Ohio, 2001.

    Book  Google Scholar 

  32. G.E. Dieter and D. Bacon, Mechanical Metallurgy, McGraw-Hill, New York, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mahdi Rafiaei.

Additional information

Conflict of Interest

Authors declare no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini-Tayeb, H., Rafiaei, S.M. Enhanced microstructural and mechanical properties of Stellite/WC nanocomposite on Inconel 718 deposited through vibration-assisted laser cladding. Int J Miner Metall Mater 29, 327–334 (2022). https://doi.org/10.1007/s12613-020-2211-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2211-0

Keywords

Navigation