Skip to main content
Log in

Tailoring microstructures of CoCrFeNiNb0.25 hypoeutectic high-entropy alloy by hot deformation

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

CoCrFeNiNb0.25 hypoeutectic high-entropy alloy (HEA) has shown good mechanical properties. However, due to interdendritic eutectics, it is challenging to further optimize the microstructure through cold rolling and annealing. The current study showed that hot deformation effectively tailored the hypoeutectic microstructure. We investigated the hot deformation behavior and microstructure evolution of the dual-phase CoCrFeNiNb0.25 HEA at different temperatures from 800 to 1000 °C and different strain rates from 0.01 to 10.00 s−1. The systematic investigation showed the deformation activation energy around 500 kJ·mol−1. Microstructure with refined grains and uniformly distributed Laves phases can be obtained after 70% compression at 900 °C with a strain rate of 0.01 s−1.

Graphical abstract

摘要

CoCrFeNiNb0.25 亚共晶高熵合金 (HEA) 显示出了良好的力学性能。然而, 枝晶间共晶的存在使通过冷轧和退火进一步优化微观组织困难。本研究发现热变形能有效地调控亚共晶微观组织。本文研究了双相CoCrFeNiNb0.25 HEA在温度800 oC至1000 oC和应变速率0.01 s−1至10.00 s−1下的热变形行为和微观组织演化。研究表明CoCrFeNiNb0.25 HEA的变形激活能量为 ~ 500 kJ·mol−1。在900 oC, 应变速率为 0.01 s−1时, 压缩 70% 后, 获得的微观组织具有细小晶粒和均匀分布的 Laves 相。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cantor B, Chang ITH, Knight P, Vincent AJB. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375–377:213.

    Article  Google Scholar 

  2. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299.

    Article  CAS  Google Scholar 

  3. Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448.

    Article  CAS  Google Scholar 

  4. Chang HT, Huo XF, Li WP, Yang T, Huang JC, Wu BL, Duan GS, Du XH. Research development of strengthening mechanism of high entropy alloy. Rare Metal Mater Eng. 2020;49(10):3633.

    Google Scholar 

  5. Sharma P, Dwivedi VK, Dwivedi SP. Development of high entropy alloys: a review. Mater Today Proc. 2021;43:502.

    Article  Google Scholar 

  6. Baker I, Wu M, Wang ZW. Eutectic/eutectoid multi-principle component alloys: a review. Mater Charact. 2019;147:545.

    Article  CAS  Google Scholar 

  7. Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345(6201):1153.

    Article  CAS  Google Scholar 

  8. Zhang Z, Mao MM, Wang J, Gludovatz B, Zhang Z, Mao SX, George EP, Yu Q, Ritchie RO. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat Commun. 2015;6:10143.

    Article  CAS  Google Scholar 

  9. Santodonato LJ, Zhang Y, Feygenson M, Parish CM, Gao MC, Weber RJK, Neuefeind JC, Tang Z, Liaw PK. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat Commun. 2015;6:5964.

    Article  Google Scholar 

  10. Senkov ON, Miller JD, Miracle DB, Woodward C. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat Commun. 2015;6:6529.

    Article  CAS  Google Scholar 

  11. Li Z, Pradeep KG, Deng Y, Raabe D, Tasan CC. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature. 2016;534(7606):227.

    Article  CAS  Google Scholar 

  12. Koželj P, Vrtnik S, Jelen A, Jazbec S, Jagličić Z, Maiti S, Feuerbacher M, Steurer W, Dolinšek J. Discovery of a superconducting high-entropy alloy. Phys Rev Lett. 2014;113(10):107001

  13. Zou Y, Maiti S, Steurer W, Spolenak R. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 2014;65:85.

    Article  CAS  Google Scholar 

  14. Senkov O, Wilks G, Scott J, Miracle D. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011;19(5):698.

    Article  CAS  Google Scholar 

  15. Wang JB, Li JJ, Wang Q, Wang JC, Wang ZJ, Liu CT. The incredible excess entropy in high entropy alloys. Scripta Mater. 2019;168:19.

    Article  CAS  Google Scholar 

  16. Lee DH, Seok MY, Zhao Y, Choi IC, He J, Lu Z, Suh JY, Ramamurty U, Kawasaki M, Langdon TG, Jang JI. Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys. Acta Mater. 2016;109:314.

    Article  CAS  Google Scholar 

  17. Otto F, Dlouhý A, Somsen C, Bei H, Eggeler G, George EP. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013;61(15):5743.

    Article  CAS  Google Scholar 

  18. Schuh B, Mendez-Martin F, Völker B, George EP, Clemens H, Pippan R, Hohenwarter A. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 2015;96:258.

    Article  CAS  Google Scholar 

  19. Wu Z, Bei H, Pharr GM, George EP. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 2014;81:428.

    Article  CAS  Google Scholar 

  20. Xian X, Zhong LJ, Zhu ZX, Chen C, Wu YC. Tailoring strength and ductility of high-entropy CrMnFeCoNi alloy by adding. Al Rare Metals. 2022. https://doi.org/10.1007/s12598-018-1161-4.

  21. Niu SZ, Kou HC, Wang J, Li JS. Improved tensile properties of Al0.5CoCrFeNi high-entropy alloy by tailoring microstructures. Rare Metals. 2021;40(9):2508.

  22. Lin YC, Huang J, He DG, Zhang XY, Wu Q, Wang LH, Chen C, Zhou KC. Phase transformation and dynamic recrystallization behaviors in a Ti55511 titanium alloy during hot compression. J Alloy Compd. 2019;795:471.

    Article  CAS  Google Scholar 

  23. Lin YC, Wu XY, Chen XM, Chen J, Wen DX, Zhang JL, Li LT. EBSD study of a hot deformed nickel-based superalloy. J Alloy Compd. 2015;640:101.

    Article  CAS  Google Scholar 

  24. Chen XM, Lin YC, Wen DX, Zhang JL, He M. Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation. Mater Des. 2014;57:568.

    Article  CAS  Google Scholar 

  25. Stepanov N, Tikhonovsky M, Yurchenko N, Zyabkin D, Klimova M, Zherebtsov S, Efimov A, Salishchev G. Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy. Intermetallics. 2015;59:8.

    Article  CAS  Google Scholar 

  26. Wang H, Guo KK, Liu XQ, Hong CF, Wang WG, Dai PQ, Tang Q. Effect of two-step thermomechanical processing on grain boundary character distribution of CoCrFeMnNi high-entropy alloy. Mater Charact. 2019;149:105.

    Article  CAS  Google Scholar 

  27. Sathiaraj GD, Skrotzki W, Pukenas A, Schaarschuch R, Immanuel RJ, Panigrahi SK, Chelvane JA, Kumar SSS. Effect of annealing on the microstructure and texture of cold rolled CrCoNi medium-entropy alloy. Intermetallics. 2018;101:87.

    Article  Google Scholar 

  28. Stepanov ND, Shaysultanov DG, Yurchenko NY, Zherebtsov SV, Ladygin AN, Salishchev GA, Tikhonovsky MA. High temperature deformation behavior and dynamic recrystallization in CoCrFeNiMn high entropy alloy. Mater Sci Eng, A. 2015;636:188.

    Article  CAS  Google Scholar 

  29. Nayan N, Singh G, Murty SVSN, Jha AK, Pant B, George KM, Ramamurty U. Hot deformation behaviour and microstructure control in AlCrCuNiFeCo high entropy alloy. Intermetallics. 2014;55:145.

    Article  CAS  Google Scholar 

  30. Eleti RR, Bhattacharjee T, Zhao LJ, Bhattacharjee PP, Tsuji N. Hot deformation behavior of CoCrFeMnNi FCC high entropy alloy. Mater Chem Phys. 2018;210:176.

    Article  CAS  Google Scholar 

  31. Sunkari U Reddy SR, Rathod BDS, Kumar D, Saha R, Chatterjee S, Bhattacharjee PP, Tuning nanostructure using thermo-mechanical processing for enhancing mechanical properties of complex intermetallic containing CoCrFeNi2.1Nbx high entropy alloys. Mater Sci Eng Struct Mater Prop Microstruct Process 2020; 769:138489.

  32. He F, Wang Z, Cheng P, Wang Q, Li J, Dang Y, Wang J, Liu CT. Designing eutectic high entropy alloys of CoCrFeNiNbx. J Alloy Compd. 2016;656:284.

    Article  CAS  Google Scholar 

  33. He F, Wang Z, Niu S, Wu Q, Li J, Wang J, Liu CT, Dang Y. Strengthening the CoCrFeNiNb0.25 high entropy alloy by FCC precipitate. J Alloys Comp. 2016; 667:53.

  34. Liu W, He J, Huang H, Wang H, Lu Z, Liu C. Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics. 2015;60:1.

    Article  Google Scholar 

  35. Prusa F, Cabibbo M, Senkova A, Kucera V, Veselka Z, Skolakova A, Vojtech D, Cibulkova J, Capek J, High-strength ultrafine-grained CoCrFeNiNb high-entropy alloy prepared by mechanical alloying: properties and strengthening mechanism. J Alloys Comp. 2020; 835:155308.

  36. Zhao JF, Wang HP, Wei B. A new thermodynamically stable Nb2Ni intermetallic compound phase revealed by peritectoid transition within binary Nb-Ni alloy system. J Mater Sci Technol. 2022;100:246.

    Article  Google Scholar 

  37. Thomas A, El-Wahabi M, Cabrera JM, Prado JM. High temperature deformation of Inconel 718. J Mater Process Technol. 2006;177(1–3):469.

    Article  CAS  Google Scholar 

  38. Yuan H, Liu WC. Effect of the δ phase on the hot deformation behavior of Inconel 718. Mater Sci Eng A. 2005;408(1–2):281.

    Article  Google Scholar 

  39. Zaddach AJ, Niu C, Koch CC, Irving DL. mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. JOM. 2013;65(12):1780.

    Article  CAS  Google Scholar 

  40. He F, Wang Z, Shang X, Leng C, Li J, Wang J. Stability of lamellar structures in CoCrFeNiNbx eutectic high entropy alloys at elevated temperatures. Mater Des. 2016;104:259.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2018YFC0310400) and the Research Fund of the State Key Laboratory of Solidification Processing, China (Nos. 2020-TS-06 and 2021-TS-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng He or Zhi-Jun Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XR., He, F., Li, JJ. et al. Tailoring microstructures of CoCrFeNiNb0.25 hypoeutectic high-entropy alloy by hot deformation. Rare Met. 41, 2028–2037 (2022). https://doi.org/10.1007/s12598-021-01932-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01932-9

Keywords

Navigation