Skip to main content

Advertisement

Log in

Microstructure, mechanical properties and stretch formability of as-rolled Mg alloys with Zn and Er additions

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The magnesium alloy has a unique advantage in 3C fields due to its high specific strength and excellent electromagnetic shielding characteristic. However, it is difficult to deform homogeneously because of hexagonal close-packed structure. In the present work, the microstructure, mechanical properties and stretch formability of magnesium alloy sheets with different alloying elements were investigated. It was indicated that a trace addition of Zn or/and Er made a key role in modifying texture, activating shear bands formation and precipitating nanoscale second phases, respectively, which resulted in an obvious improvement in both stretch formability and mechanical properties. The results suggested that the Mg–0.5Zn–0.5Er alloy sheet exhibited higher tensile strength along the rolling direction, i.e., yield strength of 180 MPa and ultimate tensile strength of 201 MPa, accompanying with superior Erichsen value of 7.0 mm at room temperature. The good performances of the sheet were ascribed to weakening basal texture intensity, formation of shear bands and precipitation of nanoscale W-phase (Mg3Zn3Er2).

Graphic abstract

The microstructure, mechanical properties and stretch formability of magnesium alloy sheets with different alloying elements were investigated in the present investigation. It was indicated that a trace addition of Zn or/and Er made a key role in modifying texture (Fig. 1), activating shear bands formation and precipitating nanoscale secondary phases (Fig. 2), respectively, which resulted in an obvious improvement in both stretch formability and mechanical properties (Fig. 3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang YJ, Yan CW, Wang FH, Li WF. Electrochemical behavior of anodized Mg alloy AZ91D in chloride containing aqueous solution. Corros Sci. 2005;47(11):2816.

    Article  CAS  Google Scholar 

  2. Chino Y, Kado M, Mabuchi M. Enhancement of tensile ductility and stretch formability of magnesium by addition of 0.2 wt% (0.035 at%) Ce. Mater Sci Eng, A. 2008;494(1-2):343.

    Article  Google Scholar 

  3. Trang TTT, Zhang JH, Kim JH, Zargaran A, Hwang JH, Suh BC, Kim NJ. Designing a magnesium alloy with high strength and high formability. Nat Commun. 2018;9(1):2522.

    Article  CAS  Google Scholar 

  4. Zhang JH, Liu SJ, Wu RZ, Hou LG, Zhang ML. Recent developments in high-strength Mg-RE-based alloys: focusing on Mg-Gd and Mg-Y systems. JMagn Alloys. 2018;6(3):277.

    Article  CAS  Google Scholar 

  5. Suh J, Hernández JV, Letzig D, Golle R, Volk W. Enhanced mechanical behavior and reduced mechanical anisotropy ofAZ31 Mg alloy sheet processed by ECAP. Mater Sci Eng, A. 2016;650(5):523.

    Article  CAS  Google Scholar 

  6. Suh J, Hernández JV, Letzig D, Golle R, Volk W. Effect of processing route on texture and cold formability of AZ31 Mg alloy sheets processed by ECAP. Mater Sci Eng, A. 2016;669(4):159.

    Article  CAS  Google Scholar 

  7. Kaseem M, Chung BK, Yang HW, Hamad K, Ko YG. Effect of deformation temperature on microstructure and mechanical properties of AZ31 Mg alloy processed by differential-speed rolling. J Mater Sci Technol. 2015;31(05):498.

    Article  CAS  Google Scholar 

  8. Luo D, Wang HY, Zhao LG, Wang C, Liu GJ, Liu Y, Jiang QC. Effect of differential speed rolling on the room and elevated temperature tensile properties of rolled AZ31 Mg alloy sheets. Mater Charact. 2017;124:223.

    Article  CAS  Google Scholar 

  9. Yan H, Xu SW, Chen RS, Kamado S, Honma T, Han EH. Twins, shear bands and recrystallization of a Mg-2.0%Zn-0.8%Gd alloy during rolling. Scr Mater. 2011;64(2):141.

    Article  CAS  Google Scholar 

  10. Stanford N. Micro-alloying Mg with Y, Ce, Gd and La for texture modification-A comparative study. Mater Sci Eng A. 2010;527(10–11):2669.

    Article  Google Scholar 

  11. Basu I, Al-Samman T. Twin recrystallization mechanisms in magnesium-rare earth alloys. Acta Mater. 2015;96:111.

    Article  CAS  Google Scholar 

  12. Tian Y, Huang H, Yuan GY, Chen CL, Wang ZC, Ding WJ. Nanoscale icosahedral quasicrystal phase precipitation mechanism during annealing for Mg-Zn-Gd-based alloys. Mater Lett. 2014;130:236.

    Article  CAS  Google Scholar 

  13. Liu P, Jiang HT, Cai ZX, Kang Q, Zhang Y. The effect of Y, Ce and Gd on texture, recrystallization and mechanical property of Mg-Zn alloys. J Magn Alloys. 2016;4(3):188.

    Article  Google Scholar 

  14. Al-Samman T, Li X. Sheet texture modification in magnesium-based alloys by selective rare earth alloying. Mater Sci Eng, A. 2011;528(10–11):3809.

    Article  Google Scholar 

  15. Yan H, Chen RS, Zheng N, Luo J, Kamado S, Han EH. Effects of trace Gd concentration on texture and mechanical properties of hot-rolled Mg-2Zn-xGd sheets. J Magn Alloys. 2013;1(1):23.

    Article  CAS  Google Scholar 

  16. Liu BS, Li HX, Ren YP, Jiang M, Qin GW. Phase equilibria of low-Y side in Mg-Zn-Y system at 400 °C. Rare Met. 2020;39(3):262.

    Article  CAS  Google Scholar 

  17. Liu K, Wang QF, Du WB, Li SB, Wang ZH. Failure mechanism of as-cast Mg-6Zn-2Er alloy during tensile test at room temperature. Trans Nonferrous Met Soc China. 2013;23(11):3193.

    Article  CAS  Google Scholar 

  18. Liu K, Sun CC, Wang ZH, Li SB, Wang QF, Du WB. Microstructure, texture and mechanical properties of Mg-Zn-Er alloys containing I-phase and W-phase simultaneously. J Alloys Compd. 2016;665:76.

    Article  CAS  Google Scholar 

  19. Wang QF, Liu K, Wang ZH, Li SB, Du WB. Microstructure, texture and mechanical properties of as-extruded Mg-Zn-Er alloys containing W-phase. J Alloys Compd. 2014;602:32.

    Article  CAS  Google Scholar 

  20. Wu HR, Du WB, Li SB, Liu K, Wang ZH. Microstructure and mechanical properties of AZ31 magnesium alloy reinforced by I-phase. Rare Met. 2019;38(8):733.

    Article  CAS  Google Scholar 

  21. Zeng ZR, Zhu YM, Xu SW, Bian MZ, Davies CHJ, Birbilis N, Nie JF. Texture evolution during static recrystallization of cold-rolled magnesium alloys. Acta Mater. 2016;105:479.

    Article  CAS  Google Scholar 

  22. Chino Y, Huang XS, Suzuki K, Sassa K, Mabuchi M. Influence of Zn concentration on stretch formability at room temperature of Mg-Zn-Ce alloy. Mater Sci Eng A. 2010;528(2):566.

    Article  Google Scholar 

  23. Barnett MR, Nave MD, Bettles CJ. Deformation microstructures and textures of some cold rolled Mg alloys. Mater Sci Eng A. 2004;386(1):205.

    Article  Google Scholar 

  24. Basu I, Al-Samman T, Gottstein G. Shear band-related recrystallization and grain growth in two rolled magnesium-rare earth alloys. Mater Sci Eng A. 2013;579(9):50.

    Article  CAS  Google Scholar 

  25. Guo F, Zhang DF, Yang XS, Jiang LY, Chai SS, Pan FS. Effect of rolling speed on microstructure and mechanical properties of AZ31 Mg alloys rolled with a wide thickness reduction range. Mater Sci Eng A. 2014;619:66.

    Article  CAS  Google Scholar 

  26. Xu SW, Kamado S, Matsumoto N, Honma T, Kojima Y. Recrystallization mechanism of as-cast AZ91 magnesium alloy during hot compressive deformation. Mater Sci Eng A. 2009;527(1):52.

    Article  Google Scholar 

  27. Drouven C, Basu I, Al-Samman T, Korte-Kerzel S. Twinning effects in deformed and annealed magnesium-neodymium alloys. Mater Sci Eng A. 2015;647:91.

    Article  CAS  Google Scholar 

  28. Kim KH, Suh BC, Bae JH, Shim MS, Kim S, Kim NJ. Microstructure and texture evolution of Mg alloys during twin-roll casting and subsequent hot rolling. Scr Mater. 2010;63(7):716.

    Article  CAS  Google Scholar 

  29. Su J, Sanjari M, Syed A, Kabir H, Jung IH, Yue S. Dynamic recrystallization mechanisms during high speed rolling of Mg-3Al-1Zn alloy sheets. Scr Mater. 2016;113:198.

    Article  CAS  Google Scholar 

  30. Hantzsche K, Bohlen J, Wendt J, Kainer KU, Yi SB, Letzig D. Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets. Scr Mater. 2010;63(7):725.

    Article  CAS  Google Scholar 

  31. Agnew SR, Duygulu Ö. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. Int J Plast. 2005;21(6):1161.

    Article  CAS  Google Scholar 

  32. Li X, Al-Samman T, Gottstein G. Mechanical properties and anisotropy of ME20 magnesium sheet produced by unidirectional and cross rolling. Mater Des. 2011;32(8):4385.

    Article  CAS  Google Scholar 

  33. Wu D, Chen RS, Han EH. Excellent room-temperature ductility and formability of rolled Mg-Gd-Zn alloy sheets. J Alloys Compd. 2011;509(6):2856.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by Beijing Natural Science Foundation (No. 2172013), the National Key Research and Development Program (No. 2016YFB0301101), Beijing Municipal Commission of Education Key Science, Technology Projects (No. KZ201810005005) and the National Natural Science Foundation of China (No. 51801048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Liang, JT., Du, WB. et al. Microstructure, mechanical properties and stretch formability of as-rolled Mg alloys with Zn and Er additions. Rare Met. 40, 2179–2187 (2021). https://doi.org/10.1007/s12598-020-01438-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01438-w

Keywords

Navigation