Skip to main content
Log in

A graphene-based all-fiber electro-absorption modulator

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

An all-fiber structured electro-absorption (EA) modulator based on graphene is proposed. The graphene is directly attached to the core of the fiber to ensure the coupling efficiency. Mode analysis is used to reveal the light modulation mechanism under the anisotropic graphene modeling, which is merely conducted in previous studies. Compared with conventional semiconductor EA modulators, it exhibits an excellent performance with the advantages such as small footprint (50.2 μm), small voltage swing (0.2 V), and broad operation bandwidth. In addition, the proposed modulator features simple structure, low optical propagation and coupling loss, and good integrated compatibility as the fiber modulator. All these edges prospect the great potentiality in future high-speed optic fiber communications, optical signal processing, and all-fiber systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Shimomura, S. Arai, Semiconductor waveguide optical switches and modulators. Fiber Integr. Opt. 13(1), 65–100 (1994)

    Article  Google Scholar 

  2. Y.D. Chung, Y.S. Kang, J.Y. Lim, S.B. Kim, J. Kim, Large enhancement of linearity in electroabsorption modulator with composite quantum-well absorption core. IEICE Trans. Electron. 88(5), 967–972 (2005)

    Article  ADS  Google Scholar 

  3. G.L. Li, P.K.L. Yu, Optical intensity modulators for digital and analog applications. J. Lightwave Technol. 21(9), 2010–2030 (2003)

    Article  ADS  Google Scholar 

  4. M. Liu, X.B. Yin, X. Zhang, Double-layer graphene optical modulator. Nano Lett. 12(3), 1482–1485 (2012)

    Article  ADS  Google Scholar 

  5. Z.L. Lu, W.S. Zhao, Nanoscale electro-optic modulators based on graphene-slot waveguides. J. Opt. Soc. Am. B 29(6), 1490–1496 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  6. C. Xu, Y.C. Jin, L.Z. Yang, J.Y. Yang, X.Q. Jiang, Characteristics of electro-refractive modulating based on Graphene-Oxide-Silicon waveguide. Opt. Express 20(20), 22398–22405 (2012)

    Article  ADS  Google Scholar 

  7. L.Z. Yang, T. Hu, R. Hao, C. Qiu, C. Xu, H. Yu, Y. Xu, X.Q. Jiang, Y.B. Li, J.Y. Yang, Low-chirp high-extinction-ratio modulator based on graphene-silicon waveguide. Opt. Lett. 38(14), 2512 (2013)

    Article  ADS  Google Scholar 

  8. M. Liu, X.B. Yin, E. ULin-Avila, B.S. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, A graphene-based broadband optical modulator. Nature 474(7349), 64–67 (2011)

    Article  ADS  Google Scholar 

  9. Q. Bao, H. Zhang, B. Wang, Zh Ni, C. Lim, Y. Wang, D.Y. Tang, K.P. Loh, Broadband graphene polarizer. Nature 5(7), 411–415 (2011)

    Google Scholar 

  10. K. Hirabayashi, M. Wada, C. Amano, Liquid crystal variable optical attenuators integrated on planar lightwave circuits. IEEE Photon. Technol. Lett. 13(6), 609–611 (2001)

    Article  ADS  Google Scholar 

  11. N. Myrén, W. Margulis, All-fiber electrooptical mode-locking and tuning. IEEE Photon. Technol. Lett. 17(10), 2047–2049 (2005)

    Article  ADS  Google Scholar 

  12. X.H. Yang, Y.X. Liu, F.J. Tian, L.B. Yuan, Z.H. Liu, S.Z. Luo, E.M. Zhao, Optical fiber modulator derivates from hollow optical fiber with suspended core. Opt. Lett. 37(11), 2115–2117 (2012)

    Article  ADS  Google Scholar 

  13. Z. Matjasec, S. Campelj, D. Donlagic, All-optical, thermo-optical path length modulation based on the vanadium-doped fibers. Opt. Express 21(10), 11794–11807 (2013)

    Article  ADS  Google Scholar 

  14. M. Malmstrom, W. Margulis, O. Tarasenko, V. Pasiskevicius, F. Laurell, Soliton generation from an actively mode-locked fiber laser incorporating an electro-optic fiber modulator. Opt. Express 20(3), 2905–2910 (2012)

    Article  ADS  Google Scholar 

  15. T. Stauber, N.M.R. Peres, A.K. Geim, Optical conductivity of graphene in the visible region of the spectrum. Phys. Rev. B 78(8), 085432 (2008)

    Article  ADS  Google Scholar 

  16. A. Vakil, N. Engheta, Transformation optics using graphene. Science 322(6035), 1291–1294 (2011)

    Article  ADS  Google Scholar 

  17. G.W. Hanson, Quasi-transverse electromagnetic modes supported by a graphene parallel plate waveguide. J. Appl. Phys. 104(8), 084314 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  18. W.L. Gao, J. Shu, C.Y. Qiu, Q.F. Xu, Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano 6(9), 7806–7813 (2012)

    Article  Google Scholar 

  19. R. Hao, W. Du, H.S. Chen, X.F. Jin, L.Z. Yang, E.P. Li, Ultra-compact optical modulator by graphene induced electro-refraction effect. Appl. Phys. Lett. 103(6), 061116 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program) under Grant No. 2012CB315703; the National Natural Science Foundation of China under Grant No. 61371029, No. 61575174 and partly by the Open Funding Program of joint laboratory of flight vehicle ocean-based measurement and control.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Jin, X., Hao, R. et al. A graphene-based all-fiber electro-absorption modulator. J Opt 45, 337–342 (2016). https://doi.org/10.1007/s12596-016-0330-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-016-0330-9

Keywords

Navigation