Skip to main content
Log in

Compensatory Adjustment in Chloride Cells During Salinity Adaptation in Mud Crab, Scylla serrata

  • Research Article
  • Published:
Proceedings of the Zoological Society Aims and scope Submit manuscript

Abstract

Capacity acclimation is a measurement of understanding the degree of adaptation that take place in physiological activities or biological functions in altered environmental conditions. Precht and Prosser in different ways classified capacity acclimation due to alterations of environmental temperature with respect to various physiological processes in a variety of organisms. We hypothesized that the same may be applied to understand the degree of adaptation in various physiological processes of organisms due to change in the salinity or any other environmental parameters. In order to understand the adaptive capability or the degree of compensation in different saline environment in some of the physiological processes of chloride cells, the chloride cells from 1 psu and or 35 psu acclimated crabs were cultured further in vitro, in L-15 media maintained with 12 psu salinity for another 5 h without any mortality. Rate of ion transport across the chloride cell membrane, and the activity of ion transporting enzyme were recorded. Over compensation or perfect compensation in the transport rate of K+, Na+ and Ca++ ions, due to hypo saline as well as hyper saline acclimation, clearly indicates their role in maintaining the homeostasis in osmoregulatory processes during salinity adaptation. On the other hand, inverse compensation or partial compensation in the transport rate of Cl ions and the activity of ATPases indicate about their involvement in adjusting the osmoregulatory processes in altered saline environment rather that contributing to adaptability processes during change in the environmental salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alvarellos, S.S., F.J. Arjona, M.P. Martin del Rio, J.M. Miguez, J.M. Mancera, and J.L. Soengas. 2005. Time course of osmoregulatory and metabolic changes during osmotic acclimation in Sparus auratus. Journal of Experimental Biology 208: 4291–4304.

    Article  Google Scholar 

  • Bhoite, S., and R. Roy. 2010. Seasonal variation in the metabolism of S. serrata during new moon and full moon phases of lunar cycle. Indian Journal of Comparative Animal Physiology 28: 39–47.

    Google Scholar 

  • Bodinier, C., V. Boulo, C. Lorin-Nebel, and G. Charmantier. 2009. Influence of salinity on the localization and expression of the CFTR chloride channel in the ionocytes of Dicentrarchus labrax during ontogeny. Journal of Anatomy 214: 318–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmona, R., M. Garcia-Gallego, A. Sanz, A. Domezain, and M.V. Ostos-Garrido. 2004. Chloride cells and pavement cells in gill epithelia of Acipenser naccarii: Ultrastructural modifications in seawater acclimated specimens. Journal Fish Biology 64: 553–566.

    Article  Google Scholar 

  • Erkmen, B., and D. Kolankaya. 2009. The relationship between chloride cells and salinity adaptation in euryhaline teleost, Lebistes reticulatus. Journal Animal and Veterinary Advances 8(5): 888–892.

    Article  CAS  Google Scholar 

  • Freire, C.A., H. Onken, and J.C. McNamara. 2008. A structure-function analysis of ion transport in crustacean gills and excretory organs. Comparative Biochemistry and Physiology 151A: 272–304.

    Article  CAS  Google Scholar 

  • Galvez, F., D.R. Scott, H. Guy, and G.G. Greg. 2002. Isolation and characterization of mitochondria rich cell types from the gill of freshwater rainbow trout. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology 282: R658–R668.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez, R.J., J. Cooper, and D. Head. 2005. Physiological responses to hypersaline waters in sailfin mollies (Poecilia latapinna). Comparative Biochemistry and Physiology 142A: 397–403.

    Article  CAS  Google Scholar 

  • Henry, R.P., C. Lucu, H. Onken, and D. Weihrauch. 2012. Multiple functions of the crustacean gill: Osmotic/ionic regulation, acid-base balance, ammonia excretion and bioaccumulation of toxic metals. Frontiers in Physiology 3: 1–33.

    Article  CAS  Google Scholar 

  • Hiroi, J., S.D. Mc Cormick, R. Ohtani-Kaneko, and T. Kaneko. 2005. Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambizus embryos, by means of triple immunofluorescence staining for Na+/K+ ATPase, Na+K+/2Cl cotransporter, and CFTR anion channel. Journal of Experimental Biology 208: 2023–2036.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, P.P., M.J. Fang, J.C. Tsai, C.J. Huang, and S. Chen. 1998. Expression of mRNA and protein of Na+-K+-ATPase α subunit in gills of tilapia (Oreochromis mossambicus). Fish Physiology and Biochemistry 18: 363–373.

    Article  CAS  Google Scholar 

  • Hwang, P.P., and T.H. Lee. 2007. New insights into fish ion regulation and mitochondrion-rich cells. Comparative Biochemistry and Physiology 148A: 479–497.

    Article  CAS  Google Scholar 

  • Lin, Y.M., C.N. Chen, and T.H. Lee. 2003. The expression of gill Na, K-ATPase in milkfish Chanos chanos, acclimated to seawater, brackish water and freshwater. Comparative Biochemistry and Physiology 135A: 489–497.

    Article  CAS  Google Scholar 

  • Lucu, C., M. Devescovi, B. Skaramuca, and V. Kozul. 2000. Gill Na+-K+-ATPase in the spiny lobster Palinurus elephas and other marine osmoconformers: Adaptiveness of enzymes from osmoconformity to hyperregulation. Journal of Experimental Marine Biology and Ecology 246: 163–178.

    Article  CAS  PubMed  Google Scholar 

  • Lucu, C., and D.W. Towle. 2003. Na+/K+ ATPase in gills of aquatic crustaceans. Comparative Biochemistry and Physiology 135A: 195–214.

    Article  CAS  Google Scholar 

  • Marshall, W.S. 2002. Na+, Cl, Ca++ and Zn++ transport by fish gills: Retrospective review and prospective synthesis. Journal of Experimental Zoology 293: 264–283.

    Article  CAS  PubMed  Google Scholar 

  • McCormick, S.D., A.M. Regish, and A.K. Christensen. 2009. Distinct freshwater and seawater isoforms of Na+-K+-ATPase in gill chloride cells of Atlantic salmon. Journal of Experimental Biology 212: 3994–4001.

    Article  CAS  PubMed  Google Scholar 

  • McNamara, J.C., and S.C. Faria. 2012. Evolution of osmoregulatory patterns and gill ion transport mechanisms in the decapod Crustacea: A review. Journal of Comparative Physiology 182B: 997–1014.

    Article  CAS  Google Scholar 

  • Nilsen, T.O., L.O.E. Ebbesson, S.S. Madsen, S.D. McCormick, E. Anderson, B.T. Bjornsson, P. Prunet, and S.O. Stefonsson. 2007. Differential expression of gill Na+-K+-ATPase α and β subunits, Na+, K+, 2Cl cotransporter and CFTR anion channel in juvenile anodromous and landlocked Atlantic salmon Salmo salar. Journal of Experimental Biology 210: 2885–2896.

    Article  CAS  PubMed  Google Scholar 

  • Precht, H. 1958. Concepts of temperature adaptation of unchanging reaction systems of cold-blooded animals. In Physiological adaptation, ed. C.L. Prosser, 51–78. Washington, DC: American Physiological Society.

    Google Scholar 

  • Prosser, C.L. 1991. Definition of comparative physiology: Theory of adaptation. In Comparative animal physiology, part environmental and metabolic animal physiology, ed. C.L. Prosser, 1–11. New York: Wiley-Liss Publication.

    Google Scholar 

  • Pujari, P., and R. Roy. 2012. Dietary polyunsaturated fatty acids alleviate D-galactosamine induced hepatitis by regulating cytokine production. International Journal of Integrative Biology 13: 24–29.

    CAS  Google Scholar 

  • Roy, R., and A.B. Das. 1990. Effects of thermal adaptation on the level of nitrogenous excretion of Channa punctatus (Bloch). Journal of Thermal Biology 15: 251–254.

    Article  Google Scholar 

  • Roy, R., D. Ghosh, and A.B. Das. 1992. Homeoviscous adaptation of different membranes in brain of an air breathing Indian teleost, Channa punctatus during seasonal variation of environmental temperature. Journal of Thermal Biology 17: 209–215.

    Article  CAS  Google Scholar 

  • Saquragui, M.M., M.G. Paulino, H.S. Henrique, and M.N. Fernandes. 2007. Na+/K+-ATPase activity in the fish gills of Pimelodus maculates. Comparative Biochemistry and Physiology 148A: S66–S79.

    Google Scholar 

  • Scott, G.R., J.G. Richards, B. Forbush, P. Isenring, and P.M. Schulte. 2004. Changes in gene expression in gills of euryhaline killifish Fundulus heteroclitus after abrupt salinity transfer. American Journal of Physiology—Cell Physiology 287: C300–C309.

    Article  CAS  PubMed  Google Scholar 

  • Shivkamat, P., and R. Roy. 2005. Regulation of membrane lipid bilayer structure during salinity adaptation: A study with the gill epithelial cell membranes of Oreochromis niloticus. Comparative Biochemistry and Physiology 142: 28–36.

    Article  CAS  PubMed  Google Scholar 

  • Trivedy, R.K., P.K. Goel, and C.L. Trisal. 1987. Practical methods in ecology and environmental science. Karad: Enviro-Media Publications.

    Google Scholar 

  • Tsai, J.R., and H.C. Lin. 2006. V-type H+-ATPase and Na+,K+-ATPase in the gills of 13 euryhaline crabs during salinity acclimation. Journal of Experimental Biology 210: 620–627.

    Article  CAS  Google Scholar 

  • Tse, W.K.T., D.W.T. Au, and C.K.C. Wong. 2006. Characterization of ion channel and transporter mRNA expressions in isolated gill chloride and pavement cells of sea water acclimating eels. Biochemical Biophysical Research Communications 346: 1181–1190.

    Article  CAS  PubMed  Google Scholar 

  • Turner, N., P.L. Else, and A.J. Hulbert. 2003. Docosahexaenoic acid (DHA) content of membranes determines molecular activity of the sodium pump: Implications for disease states and metabolism. Naturwissenschaften 90: 521–523.

    Article  CAS  PubMed  Google Scholar 

  • Venugopal, J., and S. Ramakrishna. 2005. Inhibition of ATPase enzyme activities on brain disturbing normal oestrous cycle. Neurochemical Research 30(3): 315–323.

    Article  CAS  PubMed  Google Scholar 

  • Weihrauch, D., A. Ziegler, D. Siebers, and D.W. Towle. 2002. Active ammonia excretion across the gills of green shore crab Carcinus maenas: Participation of Na+/K+-ATPase, V-type H+-ATPase and functional microtubules. Journal of Experimental Biology 205: 2765–2775.

    CAS  PubMed  Google Scholar 

  • Willmer, P., G. Stone, and I.A. Johnsto. 2005. Environmental Physiology of Animals. Malden: Blackwell Publishing.

    Google Scholar 

  • Yoshie, S., H. Yokosuka, T. Kaneko, and T. Fujita. 2000. The existence of Na+/K+-ATPase-immunoreactive cells in the pharyngeal villiform- papilla epithelium of the soft-shelled turtle, Trionyx senensis japonicus. Archives of Histology and Cytology 63: 285–290.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The financial support for this work was obtained from University Grants Commission through Special Assistance Program under DRS-1 (F-3.3/2011/SAP). Institutional Animal Ethics Committee Clearance was obtained for the said work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, R., Bhoite, S. Compensatory Adjustment in Chloride Cells During Salinity Adaptation in Mud Crab, Scylla serrata . Proc Zool Soc 69, 242–248 (2016). https://doi.org/10.1007/s12595-015-0148-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12595-015-0148-5

Keywords

Navigation