Skip to main content
Log in

Global Asymptotical Stability for a Diffusive Predator-Prey Model with Ratio-Dependent Holling Type III Functional Response

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

A diffusive predator–prey model with ratio-dependent Holling type III functional response is considered in this work. Sufficient conditions for the global asymptotical stability of the constant positive steady-state solution are derived by constructing recurrent sequences and using an iterative method. It is shown that our result supplements one of the main results of Shi and Li’s paper (Global asymptotic stability of a diffusive predator–prey model with ratio-dependent functional response. Appl Math Comput 250:71–77, 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artidi, R., Ginzburg, L.R.: Coupling in predator–prey dynamics: ratio-dependence. J. Theor. Biol. 139, 311–326 (1989)

    Article  Google Scholar 

  2. May, R.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (1973)

    Google Scholar 

  3. Murray, J.D.: Mathematical Biology. Springer-Verlag, Berlin (2002)

    Book  Google Scholar 

  4. Leslie, P.H., Gower, J.C.: The properties of a stochastic model for the predator–prey type of interaction between two species. Biometrika 47, 219–234 (1960)

    Article  MathSciNet  Google Scholar 

  5. Wollkind, J.D., Collings, J.B., Logan, J.A.: Metastability in a temperature-dependent model system for predator–prey mite outbreak interactions on fruit trees. Bull. Math. Biol. 50, 379–409 (1988)

    Article  MathSciNet  Google Scholar 

  6. Kuang, Y., Baretta, E.: Global qualitative analysis of a ratio-dependent predator–prey system. J. Math. Biol. 36, 389–406 (1998)

    Article  MathSciNet  Google Scholar 

  7. Hsu, S.B., Hwang, T.W., Kuang, Y.: Global analysis of the Michaelis–Menten-type ratio-dependent predator–prey system. J. Math. Biol. 42, 489–506 (2001)

    Article  MathSciNet  Google Scholar 

  8. Turing, A.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. (part B) 237, 37–72 (1953)

    MathSciNet  MATH  Google Scholar 

  9. Xu, R.: A reaction diffusion predator–prey model with stage structure and nonlocaldelay. Appl. Math. Comput. 175, 984–1006 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Peng, R., Wang, M.X.: Note on a ratio-dependent predator–prey system with diffusion. Nonlinear Anal. Real World Appl. 7, 1–11 (2006)

    Article  MathSciNet  Google Scholar 

  11. Ko, W., Ryu, K.: Non-constant positive steady-states of a diffusive predator–prey system in homogeneous environment. J. Math. Anal. Appl. 327, 539–549 (2007)

    Article  MathSciNet  Google Scholar 

  12. Tian, Y., Weng, P.: Stability analysis of diffusive predator–prey model with modified Leslie–Gower and Holling-type III schemes. Appl. Math. Comput. 218, 3733–3745 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Shi, H.B., Li, Y.: Global asymptotic stability of a diffusive predator-prey model with ratio-dependent functional response. Appl. Math. Comput. 250, 71–77 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Arditi, R., Saiah, H.: Empirical evidence of the role of heterogeneity in ratio-dependent consumption. Ecology 73, 1544–1551 (1992)

    Article  Google Scholar 

  15. Peng, R., Wang, M.: Global stability of the equilibrium of a diffusive Holling–Tanner prey–predator model. Appl. Math. Lett. 20, 664–670 (2007)

    Article  MathSciNet  Google Scholar 

  16. Chen, S., Shi, J.: Global stability in a diffusive Holling–Tanner predator–prey model. Appl. Math. Lett. 25, 614–618 (2012)

    Article  MathSciNet  Google Scholar 

  17. Yang, W.: Global asymptotical stability and persistent property for a diffusive predator–prey system with modified Leslie-Gower functional response. Nonlinear Anal. Real World Appl. 14, 1323–1330 (2013)

    Article  MathSciNet  Google Scholar 

  18. Duque, C., Lizana, M.: Global asymptotic stability of a ratio dependent predator–prey system with diffusion and delay. Periodica Mathematica Hungarica 56, 11–23 (2008)

    Article  MathSciNet  Google Scholar 

  19. Yang, W.S.: Global asymptotical stability for a diffusive predator–prey system with Beddington-DeAngelis functional response and nonlocal delay. J. Appl. Math. Comput. 50, 327–347 (2016)

    Article  MathSciNet  Google Scholar 

  20. Ye, Q., Li, Z., Wang, M., Wu, Y.: Introduction to Reaction-Diffusion Equations. Science Press, Beijing (2011)

    Google Scholar 

  21. Li, Z., Han, M.A., Chen, F.D.: Global stability of stage-structured predator–prey model with modified Leslie–Gower and Holling-type II schemes. Int. J. Biomath. 5(6), 13. Article ID 1250057 (2012)

  22. Yu, S.B., Chen, F.D.: Almost periodic solution of a modified Leslie–Gower predator–prey model with Holling-type II schemes and mutual interference. Int. J. Biomath. 7(3), 81–95 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is the Foundation of Fujian Education Bureau (JA15112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensheng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Li, X. Global Asymptotical Stability for a Diffusive Predator-Prey Model with Ratio-Dependent Holling Type III Functional Response. Differ Equ Dyn Syst 29, 453–461 (2021). https://doi.org/10.1007/s12591-017-0370-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-017-0370-x

Keywords

Navigation