Skip to main content
Log in

The Well-Posedness of Fractional Systems with Affine-Periodic Boundary Conditions

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper is devoted to study the existence and uniqueness of solutions for a class of nonlinear fractional dynamical systems with affine-periodic boundary conditions. We can show that there exists a solution for an \(\alpha \)-fractional system via the homotopy invariance of Brouwer degree, where \(0<\alpha \le 1\). Furthermore, using Gronwall–Bellman inequality, we can prove the uniqueness of the solution if the nonlinearity satisfies the Lipschitz continuity. We apply the main theorem to the fractional kinetic equation and fractional oscillator with constant coefficients subject to affine-periodic boundary conditions. And in appendix, we give the proof of the nonexistence of affine-periodic solution to a given \((\alpha ,Q,T)\)-affine-periodic system in the sense of Riemann–Liouville fractional integral and Caputo derivative for \(0<\alpha <1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achar, B.N.N., Hanneken, J.W.: Advances in Fractional Calculus. Springer, Dordrecht (2007)

    MATH  Google Scholar 

  2. Ahmad, B., Nieto, J.J.: Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory. Topol. Methods Nonlinear Anal. 35(2), 295–304 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Area, I., Losada, J., Nieto, J.J.: On fractional derivatives and primitives of periodic functions. Abstr. Appl. Anal. 2014, 8 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Area, I., Losada, J., Nieto, J.J.: On quasi-periodic properties of fractional sums and fractional differences of periodic functions. Appl. Math. Comput. 273, 190–200 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Area, I., Losada, J., Nieto, J.J.: On quasi-periodicity properties of fractional integrals and fractional derivatives of periodic functions. Integral Transf. Spec. Funct. 27(1), 1–16 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bagley, R.L.: Applications of generalized derivatives to viscoelasticity. Air Force Materials Lab Wright–Patterson AFB OH (1979)

  7. Bagley, R.L., Torvik, P.J.: A generalized derivative model for an elastomer damper. Shock Vibr. Inform. Center Shock Vibr. Bull 2, 135–143 (1979)

    Google Scholar 

  8. Balescu, R.: Continuous time random walk model for standard map dynamics. Phys. Rev. E 55(3), 2465–2474 (1997)

    Article  MathSciNet  Google Scholar 

  9. Barkley, D., Kness, M., Tuckerman, L.S.: Spiral-wave dynamics in a simple model of excitable media: the transition from simple to compound rotation. Phys. Rev. A 42(4), 2489–2491 (1990)

    Article  MathSciNet  Google Scholar 

  10. Beyer, H., Kempfle, S.: Definition of physically consistent damping laws with fractional derivatives. Z. Angew. Math. Mech. 75(8), 623–635 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chang, X.J., Li, Y.: Rotating periodic solutions of second order dissipative dynamical systems. Discrete Contin. Dyn. Syst. 36(2), 643–652 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, A.P., Chen, Y.: Existence of solutions to anti-periodic boundary value problem for nonlinear fractional differential equations. Differ. Equ. Dyn. Syst. 19(3), 237–252 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cheng, C., Huang, F.S., Li, Y.: Affine-periodic solutions and pseudo affine-periodic solutions for differential equations with exponential dichotomy and exponential trichotomy. J. Appl. Anal. Comput. 6(4), 950–967 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Devi, J.V.: Generalized monotone method for periodic boundary value problems of Caputo fractional differential equations. Commun. Appl. Anal. 12(4), 399–406 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics: Mainly Mechanics, Radiation, and Heat, vol. 1. Addison-Wesley Publishing Co., Inc., Reading (1963)

  16. Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics. Springer, Wien, New York (1997)

    MATH  Google Scholar 

  17. Hadamard, J.: Sur les problèmes aux dérivées partielles et leur signification physique. Princeton Univ. Bull. 13(28), 49–52 (1902)

    Google Scholar 

  18. Hu, Z.G., Liu, W.B., Rui, W.J.: Periodic boundary value problem for fractional differential equation. Internat. J. Math 23(10), 11 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204, Elsevier, Amsterdam (2006).

  20. Lévy, P., Borel, É.: Théorie de l’addition des variables aléatoires (1954)

  21. Li, Y., Huang, F.S.: Levinson’s problem on affine-periodic solutions. Adv. Nonlinear Stud. 15(1), 241–252 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Meng, X., Li, Y.: Affine-periodic solutions for discrete dynamical systems. J. Appl. Anal. Comput. 5(4), 781–792 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  24. Montroll, E.W., Shlesinger, M.F., Weiss, G.H.: Studies in Statistical Mechanics, vol. 12. North-Holland, Amsterdam (1985)

  25. Montroll, E.W., Weiss, G.H.: Random walks on lattices. II. J. Math. Phys. 6, 167–181 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nieto, J.J.: Comparison results for periodic boundary value problem of fractional differential equations. Fract. Differ. Calc. 1(1), 99–104 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. O’Regan, D., Cho, Y.J., Chen, Y.-Q.: Topological Degree Theory and Applications, vol. 10. Chapman & Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  28. Pachpatte, B.G.: A note on Gronwall–Bellman inequality. J. Math. Anal. Appl. 44, 758–762 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sabatier, J., Agrawal, O.P., Machado, J.T.: Advances in Fractional Calculus, vol. 4. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  30. Saxena, R., Mathai, A., Haubold, H.: Unified fractional kinetic equation and a fractional diffusion equation. Astrophys. Space Sci. 290(3), 299–310 (2004)

    Article  Google Scholar 

  31. Shlesinger, M.F.: Fractal time in condensed matter. Annu. Rev. Phys. Chem. 39(1), 269–290 (1988)

    Article  Google Scholar 

  32. Shlesinger, M.F., Klafter, J., Wong, Y.M.: Random walks with infinite spatial and temporal moments. J. Stat. Phys. 27(3), 499–512 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shlesinger, M.F., Zaslavsky, G.M., Frisch, U.: Lecture Notes in Physics. Lévy flights and related topics in physics, vol. 450. Springer, Berlin (1995)

    Google Scholar 

  34. Skinner, G.S., Swinney, H.L.: Periodic to quasiperiodic transition of chemical spiral rotation. Phys. D Nonlinear Phenom. 48(1), 1–16 (1991)

    Article  MATH  Google Scholar 

  35. Stein, E.M., Shakarchi, R.: Princeton Lectures in Analysis. Functional analysis: introduction to further topics in analysis, vol. 4. Princeton University Press, Princeton (2011)

    MATH  Google Scholar 

  36. Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Heidelberg; Higher Education Press, Beijing (2011)

  37. Torvik, P.J., Bagley, R.L.: On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51(2), 294–298 (1984)

    Article  MATH  Google Scholar 

  38. Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers. Higher Education Press, Beijing; Springer, Heidelberg (2013)

  39. Wang, C.B., Li, Y.: Affine-periodic solutions for nonlinear dynamic equations on time scales. Adv. Differ. Equ. 2015, 16 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, C.B., Yang, X., Li, Y.: Affine-periodic solutions for nonlinear differential equation. Rocky Mount. J. Math. 46(5), 173–1717 (2016)

    Article  MathSciNet  Google Scholar 

  41. Wang, H.-R., Yang, X., Li, Y.: Rotating-symmetric solutions for nonlinear systems with symmetry. Acta Math. Appl. Sin. Engl. Ser. 31(2), 307–312 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, X.J., Bai, C.Z.: Periodic boundary value problems for nonlinear impulsive fractional differential equation. Electron. J. Q. Theory Differ. Equ. 2011(3), 15 (2011)

    MATH  Google Scholar 

  43. Wei, Z.L., Dong, W., Che, J.L.: Periodic boundary value problems for fractional differential equations involving a Riemann–Liouville fractional derivative. Nonlinear Anal. 73(10), 3232–3238 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Weiss, G.H.: Aspects and Applications of the Random Walk. North-Holland Publishing Co., Amsterdam (1994)

    MATH  Google Scholar 

  45. Zaslavsky, G.M.: Fractional kinetic equation for Hamiltonian chaos. Phys. D 76(1–3), 110–122 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang, Y., Yang, X., Li, Y.: Affine-periodic solutions for dissipative systems. Abstr. Appl. Anal. 2013, 4 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous reviewers for their constructive suggestions and comments on improving the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixian Gao.

Additional information

The research of YL was supported in part by NSFC Grant: 11571065, 11171132 and National Research Program of China Grant 2013CB834100. The research of YG was supported in part by NSFC Grant: 11671071 and JLSTDP20160520094JH.

Appendix

Appendix

Proof of Lemma 2.4

Proof

Case 1 If \(\beta =n\), then

$$\begin{aligned} ^{RL}_{~~~a}\mathrm{I}^{\beta }_{t}{^{C}_{a}}\mathrm{D}^{\beta }_{t}f(\tau )&= \underbrace{\int _{a}^{t}\cdots \int _{a}^{t}}_{n-times} f^{(n)}(\tau ) \mathrm{d} \tau =\underbrace{\int _{a}^{t}\cdots \int _{a}^{t}}_{(n-1)-times}(f^{(n-1)} (\tau )-a_{1}^{(0)}) \mathrm{d}\tau \\&=\underbrace{\int _{a}^{t}\cdots \int _{a}^{t}}_{(n-2)-times}(f^{(n-2)}(\tau ) -a_{2}^{(0)}-a_{2}^{(1)}t) \mathrm{d}\tau \\&=\cdots \\&=\int _{a}^{t}(f^{'}(\tau )-a_{n-1}^{(0)}-a_{n-1}^{(1)}t- \cdots -a_{n-1}^{(n-2)}t^{n-2}) \mathrm{d}\tau \\&=f(t)-a_{n}^{(0)}-a_{n}^{(1)}t-\cdots -a_{n}^{(n-1)}t^{n-1}\\&\triangleq f(t)-\sum _{k=0}^{n-1}c_{k}t^{k}, \end{aligned}$$

where \(c_{k}=a_{n-1}^{(k)}\in {\mathbb {R}}^{1}\).

Case 2 If \(n-1<\beta <n\), then

$$\begin{aligned} \begin{array}{ll} ^{RL}_{~~~a}\mathrm{I}^{\beta }_{t}{^{C}_{a}}\mathrm{D}^{\beta }_{t}f(\tau )={^{RL}_{~~~a}}\mathrm{I}^{\beta }_{t}{^{RL}_{~~~a}}\mathrm{I}^{n-\beta }_{t}{^{C}_{a}}\mathrm{D}^{n}_{t}f(\tau )={^{RL}_{~~~a}}\mathrm{I}^{n}_{t}{^{C}_{a}}\mathrm{D}^{n}_{t}f(\tau ), \end{array} \end{aligned}$$

and by the proof of Case 1, we have

$$\begin{aligned} ^{RL}_{~~~a}\mathrm{I}^{\beta }_{t}{^{C}_{a}}\mathrm{D}^{\beta }_{t}f(\tau )=f(t)-\sum _{k=0}^{n-1}c_{k}t^{k}. \end{aligned}$$

\(\square \)

A Proof of the Nonexistence of \((\alpha ,Q,T)\)-Affine-Periodic Solution for a Given \((\alpha ,Q,T)\)-Affine-Periodic System when \(0<\alpha <1\)

Proof

Consider the \((\alpha ,Q,T)\)-affine-periodic system

$$\begin{aligned} ^{C}_{a} \mathrm{D}_{t}^{\alpha }{\varvec{x}}={\varvec{f}}(t,{\varvec{x}}), \quad (t,{\varvec{x}})\in [0,T]\times {\mathbb {R}}^{n}, \end{aligned}$$
(6.1)

where \(0<\alpha <1, {Q}\in GL_{n}({\mathbb {R}}), T>0, a\in {\mathbb {R}}.\)

If \({\varvec{x}}={\varvec{x}}(t)\) is an \((\alpha ,Q,t)\)-affine-periodic solution of (6.1), then \({\varvec{x}}(t+T)=Q{\varvec{x}}(t), \forall t\in [0,T].\)

Set

$$\begin{aligned} {\varvec{y}}(t)\triangleq {\varvec{x}}(t)=Q^{-1}{\varvec{x}}(t+T), \end{aligned}$$

then y should satisfy \(^{C}_{a} \mathrm{D}_{t}^{\alpha }{\varvec{y}}={\varvec{f}}(t,{\varvec{y}}). \) But in fact, it follows the definitions of Riemann–Liouville fractional integral and Caputo fractional derivative that

$$\begin{aligned} {^{C}_{a} \mathrm{D}_{t}^{\alpha }}{\varvec{y}}(t)&={^{RL}_{a} \mathrm{I}_{t}^{1-\alpha }}{^{C}_{a} \mathrm{D}_{t}^{1}}{\varvec{y}}(t)\\&={^{RL}_{a} \mathrm{I}_{t}^{1-\alpha }}{{\varvec{y}}^{'}}(t)\\&=\frac{1}{\Gamma (1-\alpha )}\int _{a}^{t}(t-\tau )^{-\alpha }{\varvec{y}}^{'}(\tau )\mathrm{d}\tau \\&=\frac{Q^{-1}}{\Gamma (1-\alpha )}\int _{a}^{t}(t-\tau )^{-\alpha }{\varvec{x}}^{'}(\tau +T)\mathrm{d}\tau \\&=\frac{Q^{-1}}{\Gamma (1-\alpha )}\int _{a+T}^{t+T}(t+T-\tau )^{-\alpha }{\varvec{x}}^{'}(\tau )\mathrm{d}\tau \\&=\frac{Q^{-1}}{\Gamma (1-\alpha )}\int _{a}^{t+T}(t+T-\tau )^{-\alpha }{\varvec{x}}^{'}(\tau )\mathrm{d}\tau \\&\quad -\frac{Q^{-1}}{\Gamma (1-\alpha )}\int _{a}^{a+T}(t+T-\tau )^{-\alpha }{\varvec{x}}^{'}(\tau )\mathrm{d}\tau \\&=Q^{-1}f(t+T,{\varvec{x}}(t+T))-\frac{Q^{-1}}{\Gamma (1-\alpha )}\int _{a}^{a+T}(t+T-\tau )^{-\alpha }{\varvec{x}}^{'}(\tau )\mathrm{d}\tau \\&=f(t,Q^{-1}{\varvec{x}}(t+T))-\frac{Q^{-1}}{\Gamma (1-\alpha )}\int _{a}^{a+T}(t+T-\tau )^{-\alpha }{\varvec{x}}^{'}(\tau )\mathrm{d}\tau \\&=f(t,{\varvec{y}}(t))-\frac{Q^{-1}}{\Gamma (1-\alpha )}\int _{a}^{a+T}(t+T-\tau )^{-\alpha }{\varvec{y}}^{'}(\tau )\mathrm{d}\tau . \end{aligned}$$

When \(a=-\infty , \)

$$\begin{aligned} {^{C}_{a} \mathrm{D}_{t}^{\alpha }}{\varvec{y}}=f(t,{\varvec{y}}), \end{aligned}$$

which is reasonable and this case is also in the sense of Weyl fractional integral, but we don’t know what is the placement in infinity. When \(a>-\infty , \) that is to say, the lower limit of integral is finite or there is a “truncation” destroys the shift-invariant, which shows the nonexistence of the \((\alpha ,Q,T)\)-affine-periodic solution for a given \((\alpha ,Q,T)\)-affine-periodic system. And some similar results about periodicity or quasi-periodicity for fractional integrals and derivatives of periodic functions can be found in Nieto et al.’s work, see [3,4,5]. \(\square \)

Remark 6.1

The above conclusion shows that in order to obtain the existence and uniqueness of affine-periodic solutions for fractional affine-periodic dynamical systems, the fractional differential operators must keep shift-invariant apart from Weyl fractional differential operators. Thus, one direction for the future research is to modify the definition of fractional derivative or to seek “quasi-periodic solutions”. This is our ongoing work and will be reported elsewhere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Li, Y., Gao, Y. et al. The Well-Posedness of Fractional Systems with Affine-Periodic Boundary Conditions. Differ Equ Dyn Syst 28, 1015–1031 (2020). https://doi.org/10.1007/s12591-017-0360-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-017-0360-z

Keywords

Navigation