Skip to main content
Log in

On Variational Inequalities with Multivalued Perturbing Terms Depending on Gradients

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we study variational inequalities of the form

$$\begin{aligned} \left\{ \begin{array}{l} \langle {\mathcal {A}}(u), v-u \rangle + \langle {{\mathcal {F}}}(u), v-u \rangle + J(v) - J(u) \ge 0,\quad \forall v\in X \\ u\in X, \end{array} \right. \end{aligned}$$

where \({\mathcal {A}}\) and \({{\mathcal {F}}}\) are multivalued operators represented by integrals, J is a convex functional, and X is a Sobolev space of variable exponent. The principal term \({\mathcal {A}}\) is a multivalued operator of Leray–Lions type. We concentrate on the case where \({{\mathcal {F}}}\) is given by a multivalued function \(f = f(x,u,\nabla u)\) that depends also on the gradient \(\nabla u\) of the unknown function. Existence of solutions in coercive and noncoercive cases are considered. In the noncoercive case, we follow a sub-supersolution approach and prove the existence of solutions of the above inequality under a multivalued Bernstein–Nagumo type condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akdim, Y., El Gorch, N., Mekkour, M.: Nonlinear parabolic inequalities in Sobolev space with variable exponent. J. Nonlinear Evol. Equ. Appl. 2015(5), 67–90 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Asfaw, T.M., Kartsatos, A.G.: A Browder topological degree theory for multi-valued pseudomonotone perturbations of maximal monotone operators. Adv. Math. Sci. Appl. 22(1), 91–148 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Asfaw, T.M., Kartsatos, A.G.: Variational inequalities for perturbations of maximal monotone operators in reflexive Banach spaces. Tohoku Math. J. (2) 66(2), 171–203 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Aubin, J.-P., Cellina, A.: Differential inclusions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 264. Springer, Berlin (1984). Set-valued maps and viability theory

  5. Aubin, J.-P., Frankowska, H.: Set-valued Analysis, Systems and Control: Foundations and Applications, vol. 2. Birkhäuser Boston Inc., Boston (1990)

    MATH  Google Scholar 

  6. Browder, F.E., Hess, P.: Nonlinear mappings of monotone type in Banach spaces. J. Funct. Anal. 11, 251–294 (1972)

    MathSciNet  MATH  Google Scholar 

  7. Carl, S.: Elliptic variational inequalities with discontinuous multi-valued lower order terms. Adv. Nonlinear Stud. 13, 55–78 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Carl, S., Heikkilä, S.: Fixed Point Theory in Ordered Sets and Applications, From Differential and Integral Equations to Game Theory. Springer, New York (2011)

  9. Carl, S., Le, V.K.: Elliptic inequalities with multi-valued operators: existence, comparison and related variational-hemivariational type inequalities. Nonlinear Anal. 121, 130–152 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Carl, S., Le, V.K., Motreanu, D.: Existence and comparison principles for general quasilinear variational-hemivariational inequalities. J. Math. Anal. Appl. 302(1), 65–83 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Carl, S., Le, V.K., Motreanu, D.: Nonsmooth Variational Problems and Their Inequalities. Comparison Principles and Applications, Springer Monographs in Mathematics. Springer, New York (2007)

  12. Chabrowski, Jan, Yongqiang, Fu: Existence of solutions for \(p(x)\)-Laplacian problems on a bounded domain. J. Math. Anal. Appl. 306, 604–618 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383–1406 (2006) (electronic)

  14. De Coster, C., Habets, P.: Two-Point Boundary Value Problems: Lower and Upper Solutions, Mathematics in Science and Engineering, vol. 205. Elsevier B. V, Amsterdam (2006)

    MATH  Google Scholar 

  15. Deimling, K.: Multivalued Differential Equations. Walter de Gruyter & Co., Berlin (1992)

    MATH  Google Scholar 

  16. Deng, Shao-Gao: Eigenvalues of the \(p(x)\)-Laplacian Steklov problem. J. Math. Anal. Appl. 339, 925–937 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Diening, L.: Theoretical and numerical results for electrorheological fluids, Ph.D. thesis. University of Freiburg, Germany (2002)

  18. Fan, X.: On the sub-supersolution method for \(p(x)\)-Laplacian equations. J. Math. Anal. Appl. 330, 665–682 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Fan, X., Deng, S.-G.: Remarks on Ricceri’s variational principle and applications to the \(p(x)\)-Laplacian equations. Nonlinear Anal. 67, 3064–3075 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Fan, X., Guan, C.-X.: Uniform convexity of Musielak–Orlicz–Sobolev spaces and applications. Nonlinear Anal. 73(1), 163–175 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Fan, X., Zhang, Q.: Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem. Nonlinear Anal. 52, 1843–1852 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Frigon, M.: Boundary and periodic value problems for systems of differential equations under Bernstein-Nagumo growth condition. Differ. Integr. Equ. 8(7), 1789–1804 (1995)

    MathSciNet  MATH  Google Scholar 

  23. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    MATH  Google Scholar 

  24. Guan, Z., Kartsatos, A.G., Skrypnik, I.V.: Ranges of densely defined generalized pseudomonotone perturbations of maximal monotone operators. J. Differ. Equ. 188, 332–351 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Halsey, T.C.: Electrorheological fluids. Science 258, 761–766 (1992)

    Google Scholar 

  26. Hartman, P.: Ordinary Differential Equations, Classics in Applied Mathematics, vol. 38. SIAM, Philadelphia (2002)

    Google Scholar 

  27. Heidarkhani, S., Afrouzi, G.A., Hadjian, A.: Multiplicity results for elliptic problems with variable exponent and nonhomogeneous Neumann conditions. Math. Methods Appl. Sci. 38(12), 2589–2599 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Hu, S.C., Papageorgiou, N.S.: Handbook of multivalued analysis, vol. I. Mathematics and its Applications, vol. 419. Kluwer Academic Publishers, Dordrecht (1997)

  29. Hu, S.C., Papageorgiou, N.S.: Handbook of multivalued analysis, vol. II, Mathematics and its Applications, vol. 500. Kluwer Academic Publishers, Dordrecht (2000)

  30. Kandilakis, D.A., Papageorgiou, N.S.: Existence theorems for nonlinear boundary value problems for second order differential inclusions. J. Differ. Equ. 132(1), 107–125 (1996)

    MathSciNet  MATH  Google Scholar 

  31. Kartsatos, A.G., Skrypnik, I.V.: A new topological degree theory for densely defined quasibounded \(({{\tilde{S}}}_+)\)-perturbations of multivalued maximal monotone operators in reflexive Banach spaces. Abstr. Appl. Anal. 2, 121–158 (2005)

    MathSciNet  MATH  Google Scholar 

  32. Kostopoulos, T., Yannakakis, N.: Density of smooth functions in variable exponent Sobolev spaces. Nonlinear Anal. 127, 196–205 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Kourogenis, N.C., Papageorgiou, N.S.: Nonlinear hemivariational inequalities of second order using the method of upper-lower solutions. Proc. Am. Math. Soc. 131, 2359–2369 (2003)

    MathSciNet  MATH  Google Scholar 

  34. Kyritsi, S.Th., Matzakos, N., Papageorgiou, Nikolaos S.: Nonlinear boundary value problems for second order differential inclusions. Czechoslovak Math. J. 55(130), 545–579 (2005)

  35. Le, V.K.: Subsolution-supersolution method in variational inequalities. Nonlinear Anal. 45, 775–800 (2001)

    MathSciNet  MATH  Google Scholar 

  36. Le, V.K.: On a sub-supersolution method for variational inequalities with Leray–Lions operators in variable exponent spaces. Nonlinear Anal. 71, 3305–3321 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Le, V.K.: A range and existence theorem for pseudomonotone perturbations of maximal monotone operators. Proc. Am. Math. Soc. 139, 1645–1658 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Le, V.K.: On variational inequalities with maximal monotone operators and multivalued perturbing terms in Sobolev spaces with variable exponents. J. Math. Anal. Appl. 388, 695–715 (2012)

    MathSciNet  MATH  Google Scholar 

  39. Le, V.K.: On second order elliptic equations and variational inequalities with anisotropic principal operators. Topol. Methods Nonlinear Anal. 44, 41–72 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Le, V.K.: On variational and quasi-variational inequalities with multivalued lower order terms and convex functionals. Nonlinear Anal. 94, 12–31 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Le, V.K.: On quasi-variational inequalities with discontinuous multivalued lower order terms given by bifunctions. Differ. Integr. Equ. 28(11–12), 1197–1232 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Loc, N.H., Schmitt, K.: Bernstein–Nagumo conditions and solutions to nonlinear differential inequalities. Nonlinear Anal. 75, 4664–4671 (2012)

    MathSciNet  MATH  Google Scholar 

  43. Marano, S.A.: On a Dirichlet problem with \(p\)-Laplacian and set-valued nonlinearity. Bull. Aust. Math. Soc. 86(1), 83–89 (2012)

    MathSciNet  MATH  Google Scholar 

  44. Mawhin, J.: The Bernstein–Nagumo problem and two-point boundary value problems for ordinary differential equations, Qualitative theory of differential equations, vols. I, II (Szeged, 1979), vol. 30, pp. 709–740. North-Holland, Amsterdam (1981)

  45. Mihăilescu, M.: Existence and multiplicity of solutions for an elliptic equation with \(p(x)\)-growth conditions. Glasg. Math. J. 48, 411–418 (2006)

    MathSciNet  MATH  Google Scholar 

  46. Mihăilescu, M., Pucci, P., Rădulescu, V.: Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent. J. Math. Anal. Appl. 340, 687–698 (2008)

    MathSciNet  MATH  Google Scholar 

  47. Mihăilescu, M., Rădulescu, V.: Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: an Orlicz-Sobolev space setting. J. Math. Anal. Appl. 330, 416–432 (2007)

    MathSciNet  MATH  Google Scholar 

  48. Mihăilescu, M., Rădulescu, V.: A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462, 2625–2641 (2006)

    MathSciNet  MATH  Google Scholar 

  49. Ôtani, M., Staicu, V.: Existence results for quasilinear elliptic equations with multivalued nonlinear terms. Set-Valued Var. Anal. 22(4), 859–877 (2014)

    MathSciNet  MATH  Google Scholar 

  50. Papageorgiou, N.S., Staicu, V.: The method of upper-lower solutions for nonlinear second order differential inclusions. Nonlinear Anal. 67, 708–726 (2007)

    MathSciNet  MATH  Google Scholar 

  51. Papalini, F.: Solvability of strongly nonlinear boundary value problems for second order differential inclusions. Nonlinear Anal. 66(10), 2166–2189 (2007)

    MathSciNet  MATH  Google Scholar 

  52. Rădulescu, V.D.: Nonlinear elliptic equations with variable exponent: old and new. Nonlinear Anal. 121, 336–369 (2015)

    MathSciNet  MATH  Google Scholar 

  53. Rădulescu, V.D., Repovš, D.D.: Partial Differential Equations with Variable Exponents, Monographs and Research Notes in Mathematics, Variational Methods and Qualitative Analysis. CRC Press, Boca Raton (2015)

  54. Rasouli, S.H.: On a PDE involving the variable exponent operator with nonlinear boundary conditions. Mediterr. J. Math. 12(3), 821–837 (2015)

    MathSciNet  MATH  Google Scholar 

  55. Ružička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, vol. 1748. Springer, Berlin (2000)

  56. Schmitt, K., Thompson, R.: Boundary value problems for infinite systems of second-order differential equations. J. Differ. Equ. 18(2), 277–295 (1975)

    MathSciNet  MATH  Google Scholar 

  57. Shakhmurov, V.B.: Embedding operators of Sobolev spaces with variable exponents and applications. Anal. Math. 41(4), 273–297 (2015)

    MathSciNet  MATH  Google Scholar 

  58. Tersenov, Alkis, Tersenov, Aris: On the Bernstein-Nagumo’s condition in the theory of nonlinear parabolic equations. J. Reine Angew. Math. 572, 197–217 (2004)

    MathSciNet  MATH  Google Scholar 

  59. Zhang, Qinghua, Li, Gang: Nonlinear boundary value problems for second order differential inclusions. Nonlinear Anal. 70(9), 3390–3406 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referees for their invaluable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vy Khoi Le.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, V.K. On Variational Inequalities with Multivalued Perturbing Terms Depending on Gradients. Differ Equ Dyn Syst 28, 763–790 (2020). https://doi.org/10.1007/s12591-017-0345-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-017-0345-y

Keywords

Mathematics Subject Classification

Navigation