Skip to main content
Log in

Correlation between plasma brain natriuretic peptide levels and left atrial appendage flow velocity in patients with non-valvular atrial fibrillation and normal left ventricular systolic function

  • Original Investigation
  • Published:
Journal of Echocardiography Aims and scope Submit manuscript

Abstract

Background

The left atrial appendage (LAA) flow velocity is an important factor for thrombus formation in patients with non-valvular atrial fibrillation (NV-AF). Recently, the relation of plasma brain natriuretic peptide (BNP) levels and thromboembolism has been reported in patients with NV-AF. The aim of this study was to determine whether the plasma BNP is predictive of lower LAA flow velocity in patients with NV-AF and normal left ventricular (LV) systolic function.

Methods and results

A total of 184 patients with NV-AF (132 men; 65 ± 12 years, LV ejection fraction; 65 ± 10%) underwent transthoracic echocardiography, transesophageal echocardiography (TEE), and measurement of plasma BNP. The LAA flow velocity was obtained by pulsed Doppler TEE. Multivariate logistic regression analysis demonstrated that plasma BNP levels, left atrial volume index (LAVI), LV mass index (LVMI), and the CHADS2 score were independent predictors of lower LAA flow velocity (< 20 cm/s). Plasma BNP levels (r = − 0.58, p < 0.001) were correlated with LAA flow velocity. The area under the curve (AUC) for BNP (AUC 0.803) was larger than that for the CHADS2 score (AUC 0.712), LAVI (AUC 0.664) and LVMI (AUC 0.608) with an optimal BNP cut-off value of 164 pg/ml (sensitivity 75.7%, specificity 71.1%).

Conclusions

This study showed that a higher plasma BNP was associated with a lower LAA flow velocity in patients with NV-AF and normal LV systolic function. The plasma BNP may complement the role of the CHADS2 score in predicting lower LAA flow velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Archer SL, James KE, Kvernen LR, et al. Role of transesophageal echocardiography in the detection of left atrial thrombus in patients with chronic nonrheumatic atrial fibrillation. Am Heart J. 1995;130:287–95.

    Article  PubMed  CAS  Google Scholar 

  2. Handke M, Harloff A, Hetzel A, et al. Left atrial appendage flow velocity as a quantitative surrogate parameter for thromboembolic risk: determinants and relationship to spontaneous echocontrast and thrombus formation—a transesophageal echocardiographic study in 500 patients with cerebral ischemia. J Am Soc Echocardiogr. 2005;18:1366–72.

    Article  PubMed  Google Scholar 

  3. Igarashi Y, Kashimura K, Makiyama Y, et al. Left atrial appendage dysfunction in chronic nonvalvular atrial fibrillation in significantly associated with an elevated level of brain natriuretic peptide and a prothrombotic state. Jpn Circ J. 2001;65:788–92.

    Article  PubMed  CAS  Google Scholar 

  4. Shimizu H, Murakami Y, Inoue S, et al. High plasma brain natriuretic polypeptide level as a marker of risk for thromboembolism in patients with nonvalvular atrial fibrillation. Stroke. 2002;33:1005–10.

    Article  PubMed  CAS  Google Scholar 

  5. Watanabe D, Shizuka K, Koyama S, et al. Plasma brain natriuretic levels indicating thromboembolism in very elderly patients with non-valvular atrial fibrillation. Circ J. 2007;71:1446–51.

    Article  PubMed  CAS  Google Scholar 

  6. Tamura H, Watanabe T, Nishiyama S, et al. Elevated plasma brain natriuretic peptide levels predict left atrial appendage dysfunction in patients with acute ischemic stroke. J Cardiol. 2012;60:126–32.

    Article  PubMed  Google Scholar 

  7. Doukky R, Gage H, Nagarajan V, et al. B-type natriuretic peptide predicts left atrial appendage thrombus in patients with nonvalvular atrial fibrillation. Echocardiography. 2013;30:889–95.

    Article  PubMed  Google Scholar 

  8. Mügge A, Kühn H, Nikutta P, et al. Assessment of left atrial appendage function by biplane transesophageal echocardiography in patients with nonrheumatic atrial fibrillation: identification of a subgroup of patients at increased embolic risk. J Am Coll Cardiol. 1994;23:599–607.

    Article  PubMed  Google Scholar 

  9. Rietbrock S, Heeley E, Plumb J, et al. Chronic atrial fibrillation: incidence, prevalence, and prediction of stroke using the congestive heart failure, hypertension, age > 75, diabetes mellitus, and prior stroke or transient ischemic attack (CHADS2) risk stratification scheme. Am Heart J. 2008;156:57–64.

    Article  PubMed  Google Scholar 

  10. Gage BF, Waterman AD, Shannon W, et al. Validation of clinical classification schemes for predicting stroke: results from the National Registry of Atrial Fibrillation. JAMA. 2001;285:2864–70.

    Article  PubMed  CAS  Google Scholar 

  11. Lester SJ, Ryan EW, Schiller NB, et al. Best method in clinical practice and in research studies to determine left atrial size. Am J Cardiol. 1999;84:829–32.

    Article  PubMed  CAS  Google Scholar 

  12. Devereux RB, Reicheck N. Echocardiographic determination of left ventricular mass in man: anatomic validation of the method. Circulation. 1977;55:613–8.

    Article  PubMed  CAS  Google Scholar 

  13. Fatkin D, Herbert E, Feneley MP. Hematologic correlates of spontaneous echo contrast in patients with atrial fibrillation and implications for thromboembolic risk. Am J Cardiol. 1994;73:672–6.

    Article  PubMed  CAS  Google Scholar 

  14. The Stroke Prevention in Atrial Fibrillation Investigators Committee on Echocardiography. Transesophageal echocardiographic correlates of thromboembolism in high-risk patients with nonvalvular atrial fibrillation. Ann Intern Med. 1998;128:639–47.

    Article  Google Scholar 

  15. García-Fernández MA, Torrecilla EG, San Román D, et al. Left atrial appendage Doppler flow patterns: implications on thrombus formation. Am Heart J. 1992;124:955–61.

    Article  PubMed  Google Scholar 

  16. Santiago D, Warshofsky M, Li Mandri G, et al. Left atrial appendage function and thrombus formation in atrial fibrillation-flutter: a transesophageal echocardiographic study. J Am Coll Cardiol. 1994;24:159–64.

    Article  PubMed  CAS  Google Scholar 

  17. Li YH, Lai LP, Shyu KG, et al. Clinical implications of left atrial appendage flow patterns in nonrheumatic atrial fibrillation. Chest. 1994;105:748–52.

    Article  PubMed  CAS  Google Scholar 

  18. Donal E, Yamada H. The left atrial appendage, a small, blind-ended structure. A review of its echocardiographic evaluation and its clinical role. Chest. 2005;128:1853–62.

    Article  PubMed  Google Scholar 

  19. Noda T, Arakawa M, Miwa H, et al. Effects of heart rate on flow velocity of the left atrial appendage in patients with nonvalvular atrial fibrillation. Clin Cardiol. 1996;19:295–300.

    Article  PubMed  CAS  Google Scholar 

  20. Iwama M, Kawasaki M, Tanaka R, et al. Left atrial appendage emptying fraction assessed by a feature-tracking echocardiographic method is a determinant of thrombus in patients with nonvalvular atrial fibrillation. J Cardiol. 2012;59:329–36.

    Article  PubMed  Google Scholar 

  21. Bansal M, Kasliwal RR. Echocardiography for left atrial appendage structure and function. Indian Heart J. 2012;64:469–75.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Panagiotopoulos K, Toumanidis S, Saridakis N, et al. Left atrial and left atrial appendage functional abnormalities in patients with cardioembolic stroke in sinus rhythm and idiopathic atrial fibrillation. J Am Soc Echocardiogr. 1998;11:711–9.

    Article  PubMed  CAS  Google Scholar 

  23. Davies MJ, Pomerance A. Pathology of atrial fibrillation in man. Br Heart J. 1972;34:520–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Falk RH. Etiology and complications of atrial fibrillation: insights from pathology studies. Am J Cardiol. 1998;82:10N–7N.

    Article  PubMed  CAS  Google Scholar 

  25. Agmon Y, Khandheria BK, Meissner I, et al. Are left atrial appendage flow velocities adequate surrogates of global left atrial function? A population-based transthoracic and transesophageal echocardiographic study. J Am Soc Echocardiogr. 2002;15:433–40.

    Article  PubMed  Google Scholar 

  26. Beigel R, Wunderlich NC, Ho SY, et al. The left atrial appendage: anatomy, function, and noninvasive evaluation. J Am Coll Cardiol Imaging. 2014;7:1251–65.

    Article  Google Scholar 

  27. Tsang TSM, Gersh BJ, Appleton CP, et al. Left ventricular diastolic dysfunction as a predictor of the first diagnosed nonvalvular atrial fibrillation in 840 elderly men and women. J Am Coll Cardiol. 2002;40:1636–44.

    Article  PubMed  Google Scholar 

  28. Tabata T, Oki T, Fukuda N, et al. Influence of left atrial pressure on left atrial appendage flow velocity patterns in patients in sinus rhythm. J Am Soc Echocardiogr. 1996;9:857–64.

    Article  PubMed  CAS  Google Scholar 

  29. Lin JM, Hsu KL, Hwang JJ, et al. Influence of left ventricular diastole on left atrial appendage blood flow in patients with nonrheumatic atrial fibrillation. Cardiology. 1997;88:563–8.

    Article  PubMed  CAS  Google Scholar 

  30. Moon J, Rim SJ, Cho IJ, et al. Left ventricular hypertrophy determines the severity of diastolic dysfunction in patients with nonvalvular atrial fibrillation and preserved left ventricular systolic function. Clin Exp Hypertens. 2010;32:540–6.

    Article  PubMed  CAS  Google Scholar 

  31. Silvet H, Young-Xu Y, Walleigh D, et al. Brain natriuretic peptide is elevated in outpatients with atrial fibrillation. Am J Cardiol. 2003;92:1124–7.

    Article  PubMed  CAS  Google Scholar 

  32. Inoue S, Murakami Y, Sano K, et al. Atrium as a source of brain natriuretic polypeptide in patients with atrial fibrillation. J Card Fail. 2000;6:92–6.

    Article  PubMed  CAS  Google Scholar 

  33. Ohta Y, Shimada T, Yoshitomi H, et al. Drop on plasma brain natriuretic peptide levels after successful direct current cardioversion in chronic atrial fibrillation. Can J Cardiol. 2001;17:415–20.

    PubMed  CAS  Google Scholar 

  34. Lee SH, Jung JH, Choi SH, et al. Determinants of brain natriuretic peptide levels in patients with lone atrial fibrillation. Circ J. 2006;70:100–4.

    Article  PubMed  CAS  Google Scholar 

  35. Sadanaga T, Kohsaka S, Mitamura H, et al. Elevated B-type natriuretic peptide level as a marker of subsequent thromboembolic events in patients with atrial fibrillation. Heart Vessels. 2011;26:530–5.

    Article  PubMed  Google Scholar 

  36. Sakai K, Shibazaki K, Kimura K, et al. Brain natriuretic peptide as a predictor of cardioembolism in acute ischemic stroke patients: brain natriuretic peptide stroke prospective study. Eur Neurol. 2013;69:246–51.

    Article  PubMed  CAS  Google Scholar 

  37. Okada Y, Shibazaki K, Kimura K, et al. Brain natriuretic peptide is a marker associated with thrombus in stroke patients with atrial fibrillation. J Neurol Sci. 2011;301:86–9.

    Article  PubMed  CAS  Google Scholar 

  38. Ayirala S, Kumar S, O’Sullivan DM, et al. Echocardiographic predictors of left atrial appendage thrombus formation. J Am Soc Echocardiogr. 2011;24:499–505.

    Article  PubMed  Google Scholar 

  39. Kim MN, Kim SA, Choi JI, et al. Improvement of predictive value for thromboembolic risk by Incorporating left atrial functional parameters in the CHADS2 and CHA2DS2-VAScs scores. Int Heart J. 2015;56:286–92.

    Article  PubMed  Google Scholar 

  40. Veinot JP, Harrity PJ, Gentile F, et al. Anatomy of the normal left atrial appendage: a quantitative study of age-related changes in 500 autopsy hearts—implications for echocardiographic examination. Circulation. 1997;96:3112–5.

    Article  PubMed  CAS  Google Scholar 

  41. Bilge M, Guler N, Eryonucu B, et al. Does acute-phase beta blockade reduce left atrial appendage function in patients with chronic nonvalvular atrial fibrillation? J Am Soc Echocardiogr. 2001;14:194–9.

    Article  PubMed  CAS  Google Scholar 

  42. Daoud EG, Marcovitz P, Knight BP, et al. Short-term effect of atrial fibrillation on atrial contractile function in humans. Circulation. 1999;99:3024–7.

    Article  PubMed  CAS  Google Scholar 

  43. Tsai LM, Chen JH, Lin LJ, et al. Natural history of left atrial spontaneous echo contrast in nonrheumatic atrial fibrillation. Am J Cardiol. 1997;80:897–900.

    Article  PubMed  CAS  Google Scholar 

  44. Ansari A, Maron BJ. Spontaneous echo contrast and thromboembolism. Hosp Pract. 1997;32:109–11.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Harada.

Ethics declarations

Conflict of interest

Masahiko Harada, Satoshi Tabako, Yuichirou Fujii, Yuichi Takarada, Kyoko Hayashi, Hiroshi Ohara, Fumihiko Hara, Takanori Ikeda declare that they have no conflicts of interest.

Human rights statements

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and later revisions.

Informed consent

Informed consent was obtained from all patients for being included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harada, M., Tabako, S., Fujii, Y. et al. Correlation between plasma brain natriuretic peptide levels and left atrial appendage flow velocity in patients with non-valvular atrial fibrillation and normal left ventricular systolic function. J Echocardiogr 16, 72–80 (2018). https://doi.org/10.1007/s12574-017-0362-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12574-017-0362-4

Keywords

Navigation