Skip to main content
Log in

Detection efficiency of microchannel plates to penetrating radiation in space

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

Space-based instruments for detection of photons, plasma, and energetic neutral atom imaging include electron multiplier detectors that are subject to increased transient noise, long-term degradation, and even potential failure due to the substantial fluxes of high-energy particles that penetrate the instrument in the space environment. The most commonly used electron multiplier detectors are multi-channel plates (MCP). These detectors are sensitive not only to the incident energetic charged particles themselves but also to the final end-product energy deposited by energetic electrons, ions, and X-rays/gammas. The resulting radiation-induced background noise can potentially contaminate the science signal. This issue constitutes undoubtedly one of the main challenges together with the radiation hardness of the electronics for particle instruments onboard future missions to Jupiter like the European Space Agency (ESA) Jupiter ICy moon Explorer (JUICE), and requires dedicated and innovative radiation mitigation techniques (e.g., multiple coincidence, anti-coincidence) far beyond the simple passive shielding techniques commonly used to protect electronics and other subsystems against total ionizing dose (TID). The accurate response (i.e., efficiency) of MCP detectors against high-energy particles is, however, not well known, with limited estimates available in the literature. This makes it complicated in particular to reliably predict the signal–noise ratio (SNR) of the instrument, and, hence, ensure that the instrument will return useful scientific data when operated in the Jovian magnetosphere. We describe and report in the present paper the results of an experiment in which we measured the response of Photonis MCP detectors to 300–1500 keV electrons and 500 keV photons (gamma rays) using a Van de Graff electron gun available at ONERA, Toulouse, France. The efficiency of the tested MCP for high-energy electrons is about 20–30% below 100 keV and is reduced to 10% for electron energies greater than 100 keV. The efficiency of the tested MCP for the gamma radiation of 500 keV energy is approximately 0.1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Carlson, C.W., McFadden, J.P.: Design and applications of imaging plasma instrument. In: Pfaff, R.F., Borovsky, J.E., Young, D.S. (eds.) Measurement techniques in space plasmas: particles, pp. 125–140. AGU Geophysical Monograph, Washington (1998)

    Google Scholar 

  2. Fennell, J.F., et al.: Current energetic particle sensors. J. Geophys. Res. 121, 8840–8858 (2016)

    Article  Google Scholar 

  3. Wurz, P., et al.: Mass spectrometric analysis in planetary science: investigation of the surface and the atmosphere. Sol. Syst. Res. 46, 408–422 (2012)

    Article  Google Scholar 

  4. Mitchell, D.J., et al.: Energetic particle imaging: the evolution of techniques in imaging high-energy neutral atom emissions. J. Geophys. Res. 121, 8804–8882 (2016)

    Article  Google Scholar 

  5. Paxton, L.J., et al.: Far UltraViolet instrument technology. J.Geophys. Res. 122, 2706–2733 (2017)

    Article  Google Scholar 

  6. Wiza, J.L.: Microchannel plate detectors. Nucl. Instrum. Methods 162, 587–601 (1979)

    Article  Google Scholar 

  7. Hamamatsu MCP guide, Technical information (2013)

  8. Daly, E.J., Hilgers, A., Drolshagen, G., Evans, H.D.R.: Space environment analysis: experience and trends. In: ESA 1996 Symposium on environment modeling for space-based applications, ESTEC, Noordwijk, 18–20 Sep 1996

  9. Blase, R.C., Benke, R.R., Cooke, C.M., Pickens, K.S.: Microchannel plate detector detection efficiency to monoenergetic electrons between 0.4 and 2.6 MeV. IEEE Trans. Nucl. Sci. 62(6), 3339–3345 (2015)

    Article  Google Scholar 

  10. Grasset, O., et al.: JUpiter ICy moons Explorer (JUICE): an ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet. Space Sci. 78, 1–21 (2013)

    Article  Google Scholar 

  11. Funsten, H., et al.: Helium, oxygen, proton, and electron (HOPE) mass spectrometer for the radiation belt storm probes mission. Space Sci. Rev. 179, 423–484 (2013)

    Article  Google Scholar 

  12. McComas, D.J., et al.: The jovian auroral distributions experiment (JADE) on the juno mission to Jupiter. Space Sci. Rev. 213, 547–643 (2017)

    Article  Google Scholar 

  13. Mauk, B.H., et al.: The jupiter energetic particle detector instrument (JEDI) investigation for the juno mission. Space Sci. Rev. 213, 289–346 (2017)

    Article  Google Scholar 

  14. Williams, D.J., et al.: The galileo energetic particle detector. Space Sci. Rev. 60, 385–412 (1992)

    Article  Google Scholar 

  15. Divine, N., Garrett, H.B.: Charged particle distributions in Jupiter’s magnetosphere. J. Geophys. Res. 88, 6889–6903 (1983)

    Article  Google Scholar 

  16. Frank, L.A., et al.: The plasma instrumentation for the Galileo mission. Space Sci. Rev. 60, 283–304 (1992)

    Article  Google Scholar 

  17. Soria-Santacruz, De, et al.: An empirical model of the high-energy electron environment at Jupiter. J. Geophys. Res. 121, 9732–9743 (2016)

    Article  Google Scholar 

  18. Sicard-Piet, A., et al.: JOSE: a new jovian specification model. IEEE Trans. Nucl. Sci. 58, 923–931 (2011)

    Article  Google Scholar 

  19. Atwell, W. et al: Analyses of several space-radiation mitigating materials: computational and Experimental results. In: SAE international conference on environmental systems (ICES), Savannah, 12–16 July 2009 (2009)

  20. Heynderickxs, D. et al.: New radiation environment and effects models in the European Space Agency’s Space Environment Information System (SPENVIS). Space Weather 2, S10S03-4 (2004)

    Google Scholar 

  21. Agostinelli, S., et al.: GEANT4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250–303 (2003)

    Article  Google Scholar 

  22. Klingelhoefer, G., Wiacker, H., Kankeleit, E.: Measurement of the detection efficiency of microchannel plates for 1-15 keV electrons. Nucl. Instrum. Methods Phys. Res. Sect. A 247, 379–384 (1986)

    Article  Google Scholar 

  23. Tulej, M. et al.: Detection efficiency of microchannel plates for e and π in the momentum range from 17.5 to 345 MeV/c. Rev. Sci. Instrum. 86, 083310-13 (2015)

    Article  Google Scholar 

  24. Funsten, H.O., et al.: Comparative response of microchannel plate and channel electron multiplier detectors to penetrating radiation in space. IEEE Trans. Nucl. Sci. 62, 2283–2293 (2015)

    Article  Google Scholar 

  25. Blase, R.C., et al.: Microchannel plate detector detection efficiency to monoenergetic electrons between 0.4 and 2.6 MeV. IEEE Trans. Nucl. Sci. 62, 3339–3345 (2015)

    Article  Google Scholar 

  26. Blase, R.C., et al.: Microchannel plate detection efficiency to monoenergetic photons between 0.66 and 20 MeV. IEEE Trans. Nucl. Sci. 65, 980–988 (2018)

    Article  Google Scholar 

  27. Tanaka, Y.T., et al.: Gamma-ray detection efficiency of the microchannel plate installed as an ion detector in the low energy particle instrument onboard the GEOTAIL satellite. Rev. Sci. Instrum. 78, 034501-4 (2007)

    Article  Google Scholar 

  28. Blase, R.C., et al.: Review of measured photon detection efficiencies of microchannel plates. IEEE Trans. Nucl. Sci. 65, 12 (2018)

    Article  Google Scholar 

  29. Tulej, M., et al.: Experimental investigation of the radiation shielding efficiency of a MCP detector in the radiation environment near Jupiter’s moon Europa. Nucl. Instrum. Methods Phys. Res. Sect. B 383, 21–37 (2016)

    Article  Google Scholar 

  30. Chassela, O.B., et al.: Thermal characterization of resistance and gain of microchannel plate (MCP) detectors for the JENI experiment. CEAS Space J. (2019). https://doi.org/10.1007/s12567-019-00265-9

    Article  Google Scholar 

  31. MacDonald, E.A., et al.: Background in channel electron multiplier detectors due to penetrating radiation in space. IEEE Trans. Nucl. Sci. 53, 1593–1598 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. André.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: MCP Datasheet

Appendix 1: MCP Datasheet

For the present test we used four Photonis MCP samples of 18 × 18 mm size, 300 MΩ resistance, 12° bias angle, with a length to diameter ratio L/D ratio of 60:1, 20–25 micron pore size, assembled in two chevrons as shown in Fig. 13.

Fig. 13
figure 13

MCP chevron assemblies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

André, N., Fedorov, A., Chassela, O. et al. Detection efficiency of microchannel plates to penetrating radiation in space. CEAS Space J 11, 607–616 (2019). https://doi.org/10.1007/s12567-019-00285-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-019-00285-5

Keywords

Navigation