Skip to main content
Log in

Manufacture and test of C/C–SiC sandwich structures

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

Sandwich structures based on C/C–SiC composites (carbon fibre-reinforced carbon with silicon carbide matrix), manufactured using the liquid silicon infiltration (LSI) process and an in situ joining method, offer high specific stiffness and strength, low thermal expansion, high environmental stability, and temperature resistance. Potential application areas are thermal protection systems (TPS) for spacecraft, optical benches in satellites, and hot structures in aerospace. In this work, C/C–SiC sandwich parts of two different geometries, small sandwich samples and large sandwich structures, were manufactured and tested. Carbon fibre-reinforced polymer (CFRP) plates for the skin panels as well as for the cores were made via warm pressing of prepregs based on a 2D carbon (C) fibre fabric, preimpregnated with phenolic resin. After pyrolysis, carbon fibre-reinforced carbon (C/C) core structures were built up and joined to C/C skin panels. Finally, the resulting C/C sandwich preforms were infiltrated with molten silicon (Si), building up a silicon carbide (SiC) matrix. The resulting C/C–SiC sandwich parts were tested in four-point and three-point bending. The applied forces and the correspondent displacements and strain of the skin panels were determined. The bending and shear stiffness as well as bending moment were evaluated through analytical and finite-element (FE) simulation approaches. Furthermore, failure modes of the sandwich samples were analysed. Sandwich stiffness and ultimate bending moment obtained in the bending tests were close to the expected theoretical values, calculated on the basis of the material properties and the sandwich geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Fan, H.L., Meng, F.H., Yang, W.: Sandwich panels with Kagome lattice cores reinforced by carbon fibers. Compos. Struct. 81, 533–539 (2007). http://www.sciencedirect.com/science/article/pii/S0263822306003874. Accessed 19 Aug 2016

    Article  Google Scholar 

  2. Russel, B.P., Liu, T., Fleck, N.A., Deshpande, V.S.: Quasi-static three-point-bending of carbon fibre sandwich beams with square honeycomb cores. J. Appl. Mech. 78(3), 031008 (2011)

    Article  Google Scholar 

  3. Kollenberg, W.: Customized kiln furniture. Interceram 60(3–4), 208–210 (2011)

    Google Scholar 

  4. Van Voorhees, E.J., Green, D.J.: Failure behavior of cellular-core ceramic sandwich composites. J. Am. Ceram. Soc. 74, 2747–2752 (1991)

    Article  Google Scholar 

  5. Fehringer, M., Andre, G., Lamarre, D., Maeusli, D.: A jewel in ESA’s crown—GOCE and its gravity measurement systems. ESA Bull. 133, 14–23 (2008)

    Google Scholar 

  6. Hurwitz, F.I.: Improved fabrication of ceramic matrix composite/foam core integrated structures. NASA Tech Briefs. 15 (2009). https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov. Accessed 27 Jan 2017

  7. Ostertag, R., Haug, T., Renz, R., Zankl, W.: Process for producing sandwich structures from fibre reinforced ceramics. US Patent 5,632,834, 1997

  8. Ortona, A., Pusterla, S., Gianella, S.: An integrated assembly method of sandwich structured ceramic matrix composites. J. Eur. Ceram. Soc. 31(9), 1821–1826 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.03.010, Elsevier (2011). http://www.sciencedirect.com. Accessed 14 Mar 2016

    Article  Google Scholar 

  9. Ferrari, L., Barbat, M., Esser, B., Petkov, I., Kuhn, M., Gianell, S., Barcena, J., Jimenez, C., Francesconi, D., Liedtke, V., Ortona, A.: Sandwich structured ceramic matrix composites with periodic cellular ceramic cores: an active cooled thermal protection for space vehicles. Compos. Struct. 154, 61–68 (2016). http://www.sciencedirect.com. Accessed 24 Jan 2017

    Article  Google Scholar 

  10. Goodman, A., Nejhad, N.G., Wright, S., Welson, D.: T300HoneySiC: a new near-zero CTE molded C/SiC material. Proc. SPIE 9574, Material Technologies and Applications to Optics, Structures, Components, and Sub-systems II. 95740E (2015), SPIE CCC code: 0277-786X/15/$18. https://doi.org/10.1117/12.2185638. Accessed 26 Jan 2017

  11. Wright, S.: SiC–SiC and C–SiC honeycomb for advanced flight structures. SBIR award 2011 (2011). https://www.sbir.gov/print/sbirsearch/detail/369329. Accessed 26 Jan 2017

  12. Le, C.: New Developments in Honeycomb Core Materials. Ultracor Inc., Livermore, Rev 022802 (2002). http://www-eng.lbl.gov/~ecanderssen/moisture/Moisture_Adsorption/NewDevelopments.pdf. Accessed 31 May 2013

  13. Lengowski, M.: Entwicklung mechanisch/thermischer Architekturen und innovativer Strukturelemente im Rahmen zweier Satellitenmissionen des Stuttgarter Kleinsatellitenprogramms. Doctoral Thesis, University of Stuttgart, Institut für Raumfahrtsysteme (IRS), pp 120–123 (2013)

  14. W. Krenkel: Entwicklung eines kostengünstigen Verfahrens zur Herstellung von Bauteilen aus keramischen Verbundwerkstoffen. Doctoral Thesis, University of Stuttgart, DLR Forschungsbericht 2000-4 (2000)

  15. Heidenreich, B., Kütemeyer, M., Koch, D.: Development of high performance ceramic brake discs for rail, aircraft and road vehicles. Proceedings of EuroBrake, Lille, France, 13–15 May 2013, FISITA (The International Federation of Automotive Engineering Societies), London (2014)

  16. Krenkel, W., Henke, T., Mason, N.: In-situ joined CMC components. First international conference on ceramic and metal matrix composites CMMC, San Sebastian, Spain, 1996. Key engineering materials, pp. 313–320. Trans Tech Publications, Uetikon-Zürich (1997)

    Article  Google Scholar 

  17. Heidenreich, B., Koch, D., Kraft, H., Klett, Y.: C/C–SiC sandwich structures manufactured via liquid silicon infiltration. J. Mater. Res. 32, 1–11 (2017). https://doi.org/10.1557/jmr.2017.208

    Article  Google Scholar 

  18. Renz, R., Heidenreich, B., Krenkel, W., Schöppach, A., Richter, F.: CMC materials for lightweight and low CTE applications. 4th International Conference on High Temperature Ceramic Matrix Composites (HT-CMC 4), München, 1–3 Oct 2001. In: Krenkel, W., Naslain, R., Schneider, H. (eds.) High Temperature Ceramic Matrix Composites, pp. 839–845, Wiley-VCH Verlag, Weinheim (2001)

    Chapter  Google Scholar 

  19. Schöppach, A., Petasch, T., Heidenreich, B., Renz, R., Krenkel, W.: Use of ceramic matrix composites in high precision laser communication optics. In: Stavrinidis, C., Rolfo, A., Breitbach, E., European Space Agency (eds.) Proceedings of the European conference on spacecraft structures, materials and mechanical testing. ESTEC, Nordwijk, The Netherlands, pp. 141–145 (2000)

  20. Heidenreich, B., Scheiffele, M., Tausendfreund, M., Wieland, H.-U.: C/C–SiC Telescope structure for the laser communication terminal in TerraSAR-X. In: Krenkel, W., Lamon, J. (eds.) High Temperature Ceramic Matrix Composites, Aviso Verlagsges, Berlin (2010)

  21. DIN EN 658-1, 1999-01, Hochleistungskeramik - Mechanische Eigenschaften von keramischen Verbundwerkstoffen bei Raumtemperatur - Teil 1: Bestimmung der Eigenschaften unter Zug; Deutsche Fassung EN 658-1:1998; English Title: Advanced technical ceramics - mechanical properties of ceramic composites at room temperature - Part 1: determination of tensile properties. German version EN 658-1:1998 (1999)

  22. DIN 53293, 1982-02, Prüfung von Kernverbunden; Biegeversuch; English title: Testing of sandwiches; Bending test (1982)

  23. Gottschalk, N.: Entwicklung von C/C–SiC Sandwichbauweisen auf der Basis von Faltstrukturen, Diplomarbeit, University of Stuttgart (2014)

  24. DIN EN ISO 14129, 1998-02, Faserverstärkte Kunststoffe - Zugversuch an 45°-Laminaten zur Bestimmung der Schubspannungs/Schubverformungs-Kurve des Schubmoduls in der Lagenebene (ISO 14129:1997); Deutsche Fassung EN ISO 14129:1997; English title: Fibre-reinforced plastic composites - Determination of the in-plane shear stress/shear strain reponse, including the in-plane schear modulus and strength, by ± 45° tension test method (ISO 14129:1997); German version EN ISO 14129:1997 (1998)

  25. Hofmann, S.: Effect of interlaminar defects on the mechanical behaviour of carbon fibre reinforced silicon carbide. Dissertation, Institute of Aircraft Design, University Stuttgart, Germany (2013)

  26. Sleiman, R.: Herstellung und Charakterisierung von C/C-SiC Werkstoffen für dünnwandige Leichtbaustrukturen. Master thesis report, Institute of Aircraft Design, University of Stuttgart (2016)

  27. Shi, Y., Heidenreich, B., Dileep, P.K., Koch, D.: Characterization and simulation of bending properties of continuous fiber reinforced C/C–SiC sandwich structures. Key Eng. Mater. 742, 215–222 (2017). https://doi.org/10.4028/www.scientific.net/KEM.742.215

    Article  Google Scholar 

  28. Shi, Y., Dileep, P.K., Heidenreich, B., Koch, D.: Determination and modeling of bending properties for continuous fiber reinforced C/C-SiC sandwich structure with grid core. Compos Str 204, 198–206 (2018). https://doi.org/10.1016/j.compstruct.2018.07.086

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Heidenreich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidenreich, B., Bamsey, N., Shi, Y. et al. Manufacture and test of C/C–SiC sandwich structures. CEAS Space J 12, 73–84 (2020). https://doi.org/10.1007/s12567-019-00263-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-019-00263-x

Keywords

Navigation