Skip to main content
Log in

Performance analysis of an IMU-augmented GNSS tracking system on board the MAIUS-1 sounding rocket

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

Satellite navigation receivers are adequate tracking sensors for range safety of both orbital launch vehicles and suborbital sounding rockets. Due to high accuracy and its low system complexity, satellite navigation is seen as well-suited supplement or replacement of conventional tracking systems like radar. Having the well-known shortcomings of satellite navigation like deliberate or unintentional interferences in mind, it is proposed to augment the satellite navigation receiver by an inertial measurement unit (IMU) to enhance continuity and availability of localization. The augmented receiver is thus enabled to output at least an inertial position solution in case of signal outages. In a previous study, it was shown by means of simulation using the example of Ariane 5 that the performance of a low-grade microelectromechanical IMU is sufficient to bridge expected outages of some ten seconds, and still meeting the range safety requirements in effect. In this publication, these theoretical findings shall be substantiated by real flight data that were recorded on MAIUS-1, a sounding rocket launched from Esrange, Sweden, in early 2017. The analysis reveals that the chosen representative of a microelectromechanical IMU is suitable to bridge outages of up to thirty seconds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

References

  1. Beader, M.E.: Application of Roll-isolated Measurement Units to the Instrumentation of Spinning Vehicles. Sandia National Laboratories. Sandia National Laboratories, Albuquerque (2000)

    Google Scholar 

  2. Belin, S., Reynaud, S., Dubuc, F., Floch, J. J., Polle, B., Resta, P.: Use of galileo for launch services application. 7th International ESA Conference on Guidance, Navigation & Control. Tralee, Ireland (2008)

  3. Braun, B.: High performance kalman filter tuning for integrated navigation systems. Technische Universität München. Munich, Germany: PhD Thesis (2016)

  4. Braun, B., Markgraf, M., Montenbruck, O.: Performance analysis of IMU-augmented GNSS tracking systems for space launch vehicles. CEAS Space J. 8(2), 117–133 (2016)

    Article  Google Scholar 

  5. Broquet, R., Perrimon, N., Polle, B., Hyounet, P., Drai, R., Voirin, T., et al: HiNAV inertial/GNSS Hybrid navigation system for launchers and re-entry vehicles. 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC). Noordwijk, the Netherlands: IEEE (2010)

  6. Chatfield, A.B.: Fundamentals of high accuracy inertial navigation. In: Zarchan, P. (ed.) Progress in astronautics and aeronautics. AIAA, Washington DC (1997)

    Google Scholar 

  7. Deutsches Zentrum für Luft- und Raumfahrt. (2007). Phoenix GPS Data Sheet. Issue 1.1, Oberpfaffenhofen, Germany

  8. Esrange Space Center. Esrange Safety Manual. Ver. 7 (2013)

  9. Esrange Space Center. User’s handbook: sounding rockets and ballons. Ver. 2 (2011)

  10. Grewal, M.S., Andrews, A.P.: Kalman filtering: theory and practice Using MATLAB, 3rd edn. Wiley, Hoboken (2008)

    Book  MATH  Google Scholar 

  11. Grewal, M.S., Weill, L.R., Andrews, A.P.: Global positioning systems, inertial navigation, and integration, 2nd edn. Wiley, Hoboken (2007)

    Book  Google Scholar 

  12. Groves, P.D.: Principles of GNSS, inertial, and multisensor integrated navigation systems, 2nd edn. Artech House, Boston (2013)

    MATH  Google Scholar 

  13. Inertial Science Inc: Digital miniature attitude reference system DMARS-R. Datasheet, Newbury Park (1999)

    Google Scholar 

  14. Inertial Science Inc: DMARS-R-FC acceptance test procedure. Internal report, Newbury Park (2008)

    Google Scholar 

  15. Lawrence, A.: Modern inertial technology, navigation, guidance, and control, 2nd edn. Springer, New York (1998)

    Google Scholar 

  16. Lux, H., Markgraf, M.: Thermal-vacuum testing of the phoenix gps receiver. Deutsches Zentrum für Luft- und Raumfahrt. Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen (2004)

    Google Scholar 

  17. Markgraf, M., Montenbruck, O.: Instantaneous impact point prediction for sounding rockets—perspectives and limitations. 16th Symposium on European Rocket and Balloon Programmes and Related Research, ESA-SP-530 (2003)

  18. Markgraf, M., Montenbruck, O.: Phoenix-HD—a miniature gps tracking system for scientific and commercial rocket launches. 6th International Symposium on Launcher Technologies. Munich, Germany (2005)

  19. Markgraf, M., Montenbruck, O.: Total ionizing dose testing of the orion and phoenix GPS receivers. Deutsches Zentrum für Luft- und Raumfahrt. Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen (2004)

    Google Scholar 

  20. Matsumoto, S., Komatsu, M., Shimane, E., Kobayashi, Y., Yamazaki, S.: Effectiveness and limitation of IMU-GPS integrated navigation and GPS attitude determination for launch vehicle guidance. 10th International ESA Conference on Guidance, Navigation & Control Systems (GNC 2017). Salzburg, Austria (2017)

  21. Montenbruck, O., Markgraf, M.: Global positioning system sensor with instantaneous-impact-point prediction for sounding rockets. J. Spacecraft Rockets 41(4), 644–650 (2004)

    Article  Google Scholar 

  22. Montenbruck, O., Enderle, W., Schesny, M., Gabosch, V., Ricken, S. Position-velocity aiding of a mitel ORION receiver for sounding-rocket tracking. 13th International Technical Meeting of the Satellite Division of The Institute of Navigation (pp. 2003–2008). The Institute of Navigation (2000)

  23. Montenbruck, O., Markgraf, M., Hassenpflug, F.: Pre-flight assessment of a dual blade antenna system for GPS tracking of sounding rockets. Technical note, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany (2001)

  24. Montenbruck, O., Markgraf, M., Jung, W., Bull, B., Engler, W.: GPS based prediction of the instantaneous impact point for sounding rockets. Aerospace Sci. Technol. 6(4), 283–294 (2002)

    Article  Google Scholar 

  25. Montenbruck, O., Markgraf, M., Turner, P., Engler, W., & Schmitt, G.: GPS tracking of sounding rockets—a European perspective. 1st ESA Workshop on Satellite Navigation User Equipment Technologies. Noordwijk, The Netherlands: ESA (2001)

  26. Narmada, Reynaud, S., Delaux, P., Biard, A.: Use of GNSS for Next European Launcher Generation. 6th International ESA Conference on Guidance, Navigation & Control Systems. Loutraki, Greece: European Space Agency (2005)

  27. Palmério, A. F., da Silva, J. P., Turner, P., Jung, W.: The development of the VSB-30 sounding rocket vehicle. 16th ESA Symposium on European Rocket and Ballon Programmes and Related Research, ESA SP-530, pp. 137–140 (2003)

  28. Polle, B., Frapard, B., Reynaud, S., Belin, S., Krauss, P., Zangerl, F., et al.: Robust INS/GPS hybrid navigator demonstrator design for launch, re-entry and orbital vehicles. 7th International ESA Conference on Guidance, Navigation & Control Systems. Tralee, Ireland (2008)

  29. Range Safety Office: Range User Handbook (1997)

  30. Schmidt, S.F.: Application of state space methods to navigation problems. In: Leondes, C.T. (ed.) Advances in control systems, vol. 3. Academic Press, New York (1966)

    Google Scholar 

  31. Seidel, S., Becker, D., Grosse, J., Lachmann, M., Popp, M., Wendrich, T., et al.: Atom interferometry on sounding rockets. 22nd. ESA Symposium on European Rocket and Balloon Programmes and Related Research, ESA SP-730 (2015)

  32. Sensonor, A.S.: STIM300 Inertia Measurement Unit. Datasheet, Horten (2015)

    Google Scholar 

  33. Sensonor, A.S.: STIM300 other gyro ranges. Datasheet addendum, Horten (2014)

    Google Scholar 

  34. Simon, D.: Optimal state estimation. Wiley, Hoboken (2006)

    Book  Google Scholar 

  35. Stamminger, A., Ettl, J., Grosse, J., Wittkamp, M.: MAIUS-1—vehicle, subsystems design and mission operations. 22nd ESA Symposium on European Rocket and Balloon Programmes and Related Research, ESA SP-730, pp. 183–190 (2015)

  36. Steffes, S.R.: Development and analysis of SHEFEX-2 hybrid navigation system experiment. Ph.D. Dissertation, Universität Bremen, Bremen, Germany (2013)

  37. Titterton, D.H., Weston, J.L.: Strapdown inertial navigation technology (2nd ed.). The Institution of Electrical Engineers (2004)

  38. WFF Safety Office: Range Safety Manual for Goddard Space Flight Center (GSFC). Suborbital and Special Oribtal Projects Directorate (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Braun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braun, B., Grillenberger, A. & Markgraf, M. Performance analysis of an IMU-augmented GNSS tracking system on board the MAIUS-1 sounding rocket. CEAS Space J 10, 407–425 (2018). https://doi.org/10.1007/s12567-018-0206-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-018-0206-8

Keywords

Navigation