Skip to main content
Log in

Space gravitational wave antenna DECIGO and B-DECIGO

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

Since the direct detection of gravitational wave will give us a fruitful insight about the early universe or life of stars, laser interferometric gravitational wave detectors with the strain sensitivity of higher than 10−22 have been developed. In Japan, the space gravitational wave detector project named DECi-hertz Gravitational wave Observatory (DECIGO) has been promoted which consists of three satellites forming equilateral triangle-shaped Fabry–Perot laser interferometer with the arm length of 1000 km. The designed strain sensitivity of DECIGO is 2 × 10−24/√Hz around 0.1 Hz whose targets are gravitational waves originated from the inspiral and the merger of black hole or neutron star binaries and from the inflation at the early universe, and no ground-based gravitational wave detector can access this observation band. Before launching DECIGO in 2030s, a milestone mission named B-DECIGO is planned which is a downsized mission of DECIGO. B-DECIGO also has its own scientific targets in addition to the feasibility test for DECIGO. In the present paper, DECIGO and B-DECIGO projects are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Einstein, A.: Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. 49, 769–822 (1916)

    Article  MATH  Google Scholar 

  2. Weinstein, A.: Advanced LIGO optical configuration and prototyping effort. Class. Quantum. Grav. 19, 1575–1585 (2002)

    Article  Google Scholar 

  3. Acernese, F., Amico, P., Alshourbagy, M., et al.: The virgo 3 km interferometer for gravitational wave detection. J. Opt. A 10, 064009 (2008)

    Article  Google Scholar 

  4. Kuroda, K., et al.: The status of LCGT. Class. Quantum. Grav. 23, S215–S221 (2006)

    Article  Google Scholar 

  5. Hough, J., et.al: Max-Planc fur Quantumphysik Technical Report No. VIR-0517A-15 (1989)

  6. Abbott, B.P., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)

    Article  MathSciNet  Google Scholar 

  7. Abbott, B.P., et al.: GW122516: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116, 24113 (2016)

    Google Scholar 

  8. Abbott, B.P., et al.: GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift of 0.2. Phys. Rev. Lett. 118, 221101 (2017)

    Article  Google Scholar 

  9. Abbott, B.P., et al.: GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Phys. Rev. Lett. 119, 141101 (2017)

    Article  Google Scholar 

  10. Abbott, B.P., et al.: GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017)

    Article  Google Scholar 

  11. Amaro-Seoane, P., et al.: Low-frequency gravitational-wave science with eLISA/NGO. Class. Quantum. Grav. 29, 124016 (2012)

    Article  Google Scholar 

  12. LISA mission was submitted after NASA proposed to rejoin eLISA project in 2017 LISA Consortium.: LISA: Laser Interferometer Space Antenna. Retrieved 16 January (2017)

  13. Seto, N., Kawamura, S., Nakamura, T.: Possibility of direct measurement of the acceleration of the universe using laser interferometer gravitational wave antenna in space. Phys. Rev. Lett. 87, 221103 (2001)

    Article  Google Scholar 

  14. Cyranosky, D.: Chinese gravitational-wave hunt hits crunch time. Nature 513, 150 (2016)

    Article  Google Scholar 

  15. Armano, M., et al.: Sub-femto-g free fall for space-based gravitational wave observatories: lISA Pathfinder results. Phys. Rev. Lett. 116, 231101 (2016)

    Article  Google Scholar 

  16. Sesana, A., Gair, J., Mandel, I., Vecchio, A.: Observing gravitational waves from the first generation black holes. Astrophys. J. Lett. 698, L.129 (2009)

    Article  Google Scholar 

  17. Konstantinidis, S., Amaro-Seoane, P., Kokkotas, K.D.: Investigating the retention of intermediate-mass black holes in star clusters using N-body simulations. Astron. Astrophys. 557, A135 (2013)

    Article  Google Scholar 

  18. Kuroyanagi, S., Chiba, T., Sugiyama, N.: Precision calculations of the gravitational wave background spectrum from inflation. Phys. Rev. D 79, 103501 (2009)

    Article  Google Scholar 

  19. Ade, P., et al.: Detection of B-mode polarization at degree angular scales by BICEP2. Phys. Rev. Lett. 112, 241101 (2014)

    Article  Google Scholar 

  20. Liddle, A., Lyth, D.: COBE, gravitational waves, inflation and extended inflation. Phys. Lett. B 291, 391 (1992)

    Article  Google Scholar 

  21. Kokuyama, W.: Spaceborne rotating torsion-bar antenna for low-frequency gravitational-wave observations. Doctor thesis The University of Tokyo (2012)

  22. Ando, M., Kawamura, S., Seto, N., et al.: DECIGO pathfinder. Class. Quantum Grav. 26, 094019 (2009)

    Article  Google Scholar 

  23. Suemasa, A., Musha, M.: Highly frequency-stabilized laser for space gravitational wave detector DECIGO/DPF. In: Proceeding of ICSO 2014, Tenerife Spain (2014)

  24. Sato, S., et al.: Test-mass module for DECIGO pathfinder. J. Phys: Conf. Ser. 228, 0120463 (2010)

    Google Scholar 

  25. Musha, M., DECIGO collaborations: Japanese gravitational wave antenna DECIGO/DPF. In: Proceeding of ICSO 2014, Tenerife Spain (2014)

  26. Kawamura, S., et al.: The Japanese space gravitational wave antenna DECIGO. Class. Quantum Gravity 28, 094011 (2011)

    Article  Google Scholar 

  27. Jono, T., Takayama, Y. et.al.: Overview of the inter-orbit and orbit-to-ground laser communication demonstration by OICETS. In: Proceedings of SPIE 6457, p. 645702 (2007)

  28. Suemasa A., Musha, M.: Development of high frequency and intensity stabilized lasers for gravitational wave detector DECIGO/B-DECIGO. (CEAS space journal to be published)

  29. Nakamura, T., et al.: Pre-DECIGO can get the smoking gun to decide the astrophysical or cosmological origin of GW150914-like binary black holes. Prog. Theory Exp. Phys. 2016, 093E01 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Japanese Aerospace Exploration Agency (JAXA), and by the Japan Society for the Promotion of Science (JSPS0, Grant-in-Aid for Scientific Research 15H02082.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Mitsuru Musha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musha, M., DECIGO Working Group. Space gravitational wave antenna DECIGO and B-DECIGO. CEAS Space J 9, 371–377 (2017). https://doi.org/10.1007/s12567-017-0177-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-017-0177-1

Keywords

Navigation