Skip to main content
Log in

Cooperative rendezvous between two spacecraft under finite thrust

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

Dynamic equations of orbital elements of a modified vernal equinox for a far-distance cooperative rendezvous between two spacecraft were set up in this paper. The process of the far-distance cooperative rendezvous was optimized by a hybrid algorithm combining particle swarm optimization and differential evolution. The convergent costate vectors were obtained and set as the initial values of sequential quadratic programming to search for precise solutions, and the results proved to be stable and convergent. It can be seen from the results that the flight time of the cooperative rendezvous would be largely saved the amplitude of the thrust would be increased if the other conditions are fixed, and the fuel consumption would not be increased. However, the flight time would no longer decrease when the amplitude of the thrust reaches a certain value. In the last section of this paper, cooperative rendezvous and active–passive rendezvous were compared and analyzed, showing the advantages of cooperative rendezvous when the initial conditions are the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(a\) :

Semi-major axis

e :

Eccentricity

\(i\) :

Orbit inclination angle

\(I_{\text{sp}}\) :

Thruster-specific impulse

\(J\) :

Performance index

\(m_{0}\) :

Initial mass of the satellite

\(m\) :

Mass of the satellite

T :

Thrust

\(R_{\text{e}}\) :

Equator radius

\(u\) :

Ratio of the amplitude of the actual thrust relative to \(T_{\text{max} }\)

\(\varvec{\alpha}\) :

Unit direction vector

\(\beta\) :

Pitch angle

\(\theta\) :

True anomaly

\(\varvec{\varPhi}\) :

Shooting equation

\(\gamma\) :

Yaw angle

λ :

Costate

μ :

Gravitational constant of the earth

ω :

Perigee amplitude

Ω :

Longitude ascending node

g 0 :

Gravitational acceleration

References

  1. Kechichian, J.A.: The optimization of continuous constant acceleration transfer trajectories in the presence of the J 2 perturbation. Astrodynamics 1999, 1627–1648 (2000)

    Google Scholar 

  2. Goodson, T.D.: Fuel-optimal Control and Guidance for Low-and Medium-Thrust Orbit Transfer. Georgia Institute of Technology, Atlanta (1995)

    Google Scholar 

  3. Chien-Hsiung, C., Speyer, J.L.: Periodic optimal hypersonic scramjet cruise. Optim. Control Appl. Methods 8(3), 1403–1408 (1985)

    MATH  Google Scholar 

  4. C-Hgoodson, C., Troy, D., Ledsinger, L., Hanson, J.: The second variation and neighboring optimal feedback guidance for multiple burn orbit transfers. In: Guidance, Navigation, and Control Conference (1995)

  5. Betts, J.T., Erb, S.O.: Optimal low thrust trajectories to the moon. SIAM J. Appl. Dyn. Syst. 2(2), 144–170 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Betts, J.T.: Very low-thrust trajectory optimization using a direct SQP method. J. Comput. Appl. Math. 120(s 1–s 2), 27–40 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Herman, A.L., Spencer, D.B.: Optimal, low-thrust earth-orbit transfers using higher-order collocation methods. J. Guid. Control Dyn. 25(1), 40–47 (2002)

    Article  Google Scholar 

  8. Armellin, R., Topputo, F.: A sixth-order accurate scheme for solving two-point boundary value problems in astrodynamics. Celest. Mech. Dyn. Astron. 96(3), 289–309 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zavoli, A., Colasurdo, G.: Indirect optimization of finite-thrust cooperative rendezvous. J. Guid. Control Dyn. 38(2), 304–314 (2015)

    Article  Google Scholar 

  10. Zhu, R.Z.: Rendezvous and docking techniques of spacecraft [M]. National Defense Industry Press, Beijing (2007)

    Google Scholar 

  11. Prussing, J.E., Conway, B.A.: Optimal terminal maneuver for a cooperative impulsive rendezvous. J. Guid. Control Dyn. 12(3), 433–435 (1971)

    Article  Google Scholar 

  12. Mirfakhraie, K.: Optimal cooperative time-fixed impulsive rendezvous. J. Guid. Control Dyn. 17(3), 757–770 (1988)

    Google Scholar 

  13. Crispin, Y., Seo, D.: Rendezvous between two active spacecraft with continuous low thrust. In Tech (2011)

  14. Feng, W.M., Ren, F., Shi, L., Feng, W.M., Ren, F., Shi, L.: Optimal control for far-distance rapid cooperative rendezvous. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 228(14), 2662–2673 (2014)

    Article  Google Scholar 

  15. Feng, W., Han, L., Shi, L., Zhao, D., Yang, K.: Optimal control for a cooperative rendezvous between two spacecraft from determined orbits. J. Astronaut. Sci. 63(1), 23–46 (2016)

    Article  Google Scholar 

  16. Bate, R.R., Mueller, D.D., White, J.E.: Fundamentals of Astrodynamics. Progress Publishers, Mascow (1971)

    Google Scholar 

  17. Pontani, M., Conway, B.A.: Particle swarm optimization applied to space trajectories. J. Guid. Control Dyn. 33(5), 1429–1441 (2010)

    Article  Google Scholar 

  18. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Das, S., Abraham, A., Konar, A.: Particle swarm optimization and differential evolution algorithms: technical analysis, applications and hybridization perspectives. Int. J. Comput. Intell. Stud. 116, 1–38 (2008)

    Google Scholar 

  20. Betts, J.T.: Using sparse nonlinear programming to compute low thrust orbit transfers. J. Astronaut. Sci. 41(3), 349–371 (1993)

    Google Scholar 

  21. Herman, A.L., Conway, B.A.: Direct optimization using collocation based on high-order Gauss–Lobatto quadrature rules. J. Guid. Control Dyn. 19(3), 592–599 (1996)

    Article  MATH  Google Scholar 

  22. Sun, J.W., Qiao, D., Cui, P.Y.: Study on the optimal trajectories of lunar soft-landing with fixed-thrust using SQP method. J. Astronaut. 1, 021 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiming Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, W., Wang, B., Yang, K. et al. Cooperative rendezvous between two spacecraft under finite thrust. CEAS Space J 9, 227–241 (2017). https://doi.org/10.1007/s12567-017-0145-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-017-0145-9

Keywords

Navigation