Skip to main content
Log in

Modeling the Transport of Human Rotavirus and Norovirus in Standardized and in Natural Soil Matrix-Water Systems

  • Original Paper
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

We modeled Group A Rotavirus (RVA) and Norovirus genogroup II (GII NoV) transport experiments in standardized (crystal quartz sand and deionized water with adjusted pH and ionic strength) and natural soil matrix-water systems (MWS). On the one hand, in the standardized MWS, Rotavirus and Norovirus showed very similar breakthrough curves (BTCs), showing a removal rate of 2 and 1.7 log10, respectively. From the numerical modeling of the experiment, transport parameters of the same order of magnitude were obtained for both viruses. On the other hand, in the natural MWS, the two viruses show very different BTCs. The Norovirus transport model showed significant changes; BTC showed a removal rate of 4 log10, while Rotavirus showed a removal rate of 2.6 log10 similar to the 2 log10 observed on the standardized MWS. One possible explanation for this differential behavior is the difference in the isoelectric point value of these two viruses and the increase of the ionic strength on the natural MWS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amin, M. M., Šimůnek, J., & Lægdsmand, M. (2014). Simulation of the redistribution and fate of contaminants from soil-injected animal slurry. Agricultural Water Management,131, 17–29.

    Article  Google Scholar 

  • Anders, R., & Chrysikopoulos, C. V. (2009). Transport of viruses through saturated and unsaturated columns packed with sand. Transport in Porous Media,76(1), 121–138.

    Article  CAS  Google Scholar 

  • APHA (American Public Health Association). (2017). 2540-D and 2540-E. Standard Methods for the Examination of Water and Wastewater (23rd ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • Atmar, R. L., Ramani, S., & Estes, M. K. (2018). Human noroviruses: Recent advances in a 50-year history. Current Opinion in Infectious Diseases,31(5), 422–432.

    Article  PubMed  Google Scholar 

  • Aw, T. (2018). Environmental aspects and features of critical pathogen groups. In J. B. Rose & B. Jiménez-Cisneros (Eds.), Global water pathogen project. https://www.waterpathogens.org (J.B. Rose and B. Jiménez-Cisneros) (Eds.), Part 1 The Health Hazards of Excreta: Theory and Control)

  • Betancourt, W. Q., Schijven, J., Regnery, J., Wing, A., Morrison, C. M., Drewes, J. E., et al. (2019). Variable non-linear removal of viruses during transport through a saturated soil column. Journal of Contaminant Hydrology,223, 103479.

    Article  CAS  PubMed  Google Scholar 

  • Bohn, H., McNeal, B. L., & O’Connor, G. (1979). Soil chemistry. New York, N.Y: Wiley.

    Google Scholar 

  • Crawford, S. E., Ramani, S., Tate, J. E., Parashar, U. D., Svensson, L., Hagbom, M., et al. (2017). Rotavirus infection. Nature Reviews Disease Primers,3, 17083.

    Article  PubMed  Google Scholar 

  • Dika, C., Duval, J. F., Francius, G., Perrin, A., & Gantzer, C. (2015). Isoelectric point is an inadequate descriptor of MS2, Phi X 174 and PRD1 phages adhesion on abiotic surfaces. Journal of Colloid and Interface Science,446, 327–334.

    Article  CAS  PubMed  Google Scholar 

  • Diston, D., Sinreich, M., Zimmermann, S., Baumgartner, A., & Felleisen, R. (2015). Evaluation of molecular- and culture-dependent MST markers to detect fecal contamination and indicate viral presence in good quality groundwater. Environmental Science and Technology,49(12), 7142–7151.

    Article  CAS  PubMed  Google Scholar 

  • Dowd, S. E., Pillai, S. D., Wang, S., & Corapcioglu, M. Y. (1998). Delineating the specific influence of virus isoelectric point and size on virus adsorption and transport through sandy soils. Applied and Environmental Microbiology,64(2), 405–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estes, M., & Greenberg, H. (2013). RVAes. In Knipe, D. M., Howley, P.M., Cohen, J. I., Griffin, D. E., Lamb R. A., Martin, M. A., et al. (Eds.), Fields virology (6th ed.) Philadelphia: Wolters Kluwer business/Lippincott Williams and Wilkins

    Google Scholar 

  • Frohnert, A., Apelt, S., Klitzke, S., Chorus, I., Szewzyk, R., & Selinka, H. C. (2014). Transport and removal of viruses in saturated sand columns under oxic and anoxic conditions—Potential implications for groundwater protection. International Journal of Hygiene and Environmental Health,217(8), 861–870.

    Article  CAS  PubMed  Google Scholar 

  • Gamazo, P., Victoria, M., Schijven, J. F., Alvareda, E., Tort, L. F. L., & Ramos, J. (2018). Evaluation of bacterial contamination as an Indicator of viral contamination in a sedimentary aquifer in Uruguay. Food and Environmental Virology,10(3), 305–315.

    Article  CAS  PubMed  Google Scholar 

  • Gerba, C. P., & Betancourt, W. Q. (2017). Viral aggregation: impact on virus behavior in the environment. Environmental Science & Technology,51(13), 7318–7325.

    Article  CAS  Google Scholar 

  • Hall, A. J., Lopman, B. A., Payne, D. C., Patel, M. M., Gastañaduy, P. A., Vinjé, J., et al. (2013). Norovirus disease in the United States. Emerging Infectious Diseases,19(8), 1198.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haramoto, E., Kitajima, M., Hata, A., Torrey, J. R., Masago, Y., Sano, D., et al. (2018). A review on recent progress in the detection methods and prevalence of human enteric viruses in water. Water Research,135, 168–186.

    Article  CAS  PubMed  Google Scholar 

  • Hernroth, B. E., Conden-Hansson, A. C., Rehnstam-Holm, A. S., Girones, R., & Allard, A. K. (2002). Environmental factors influencing human viral pathogens and their potential indicator organisms in the blue mussel, Mytilus edulis: The first Scandinavian report. Applied and Environmental Microbiology,68(9), 4523–4533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornstra, L. M., Schijven, J. F., Waade, A., Prat, G. S., Smits, F. J., Cirkel, G., et al. (2018). Transport of bacteriophage MS2 and PRD1 in saturated dune sand under suboxic conditions. Water Research,139, 158–167.

    Article  CAS  PubMed  Google Scholar 

  • Jury, W. A., Gardner, W. R., & Gardner, W. H. (1991). Soil physics, (pp. 1–32). New York, NY: Wiley.

    Google Scholar 

  • Kageyama, T., Kojima, S., Shinohara, M., Uchida, K., Fukushi, S., Hoshino, F. B., et al. (2003). Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. Journal of Clinical Microbiology,41(4), 1548–1557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokkinos, P., Syngouna, V. I., Tselepi, M. A., Bellou, M., Chrysikopoulos, C. V., & Vantarakis, A. (2015). Transport of human adenoviruses in water saturated laboratory columns. Food and Environmental Virology,7(2), 122–131.

    Article  Google Scholar 

  • Kvitsand, H. M., Ilyas, A., & Østerhus, S. W. (2015). Rapid bacteriophage MS2 transport in an oxic sandy aquifer in cold climate: Field experiments and modeling. Water Resources Research,51(12), 9725–9745.

    Article  CAS  Google Scholar 

  • Langlet, J., Gaboriaud, F., Gantzer, C., & Duval, J. F. (2008). Impact of chemical and structural anisotropy on the electrophoretic mobility of spherical soft multilayer particles: The case of bacteriophage MS2. Biophysical Journal,94(8), 3293–3312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mashayekhi, P., Ghorbani-Dashtaki, S., Mosaddeghi, M. R., Shirani, H., & Nodoushan, A. R. M. (2016). Different scenarios for inverse estimation of soil hydraulic parameters from double-ring infiltrometer data using HYDRUS-2D/3D. International Agrophysics,30(2), 203–210.

    Article  Google Scholar 

  • Mayotte, J. M., Hölting, L., & Bishop, K. (2017). Reduced removal of bacteriophage MS2 in during basin infiltration managed aquifer recharge as basin sand is exposed to infiltration water. Hydrological Processes,31(9), 1690–1701.

    Article  CAS  Google Scholar 

  • Michen, B., & Graule, T. (2010). Isoelectric points of viruses. Journal of Applied Microbiology,109(2), 388–397.

    CAS  PubMed  Google Scholar 

  • Mondal, P. K., & Sleep, B. E. (2013). Virus and virus-sized microsphere transport in a dolomite rock fracture. Water Resources Research,49(2), 808–824.

    Article  Google Scholar 

  • Morales, I., Atoyan, J., Amador, J., & Boving, T. (2014). Transport of pathogen surrogates in soil treatment units: Numerical modeling. Water,6(4), 818–838.

    Article  Google Scholar 

  • Pang, L., Farkas, K., Bennett, G., Varsani, A., Easingwood, R., Tilley, R., et al. (2014). Mimicking filtration and transport of rotavirus and adenovirus in sand media using DNA-labeled, protein-coated silica nanoparticles. Water Research,62, 167–179.

    Article  CAS  PubMed  Google Scholar 

  • Regli, S., Rose, J. B., Haas, C. N., & Gerba, C. P. (1991). Modeling the risk from Giardia and viruses in drinking water. Journal-American Water Works Association,83(11), 76–84.

    Article  CAS  Google Scholar 

  • Rose, J. B., Zhou, X., Griffin, D. W., & Paul, J. H. (1997). Comparison of PCR and plaque assay for detection and enumeration of coliphage in polluted marine waters. Applied and Environmental Microbiology,63(11), 4564–4566.

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi, G., Schijven, J. F., Behrends, T., Hassanizadeh, S. M., Gerritse, J., & Kleingeld, P. J. (2011). Systematic study of effects of pH and ionic strength on attachment of phage PRD1. Groundwater,49(1), 12–19.

    Article  CAS  Google Scholar 

  • Sasidharan, S., Bradford, S. A., Šimůnek, J., & Torkzaban, S. (2018). Minimizing virus transport in porous media by optimizing solid phase inactivation. Journal of Environmental Quality.,47(5), 1058–1067.

    Article  CAS  PubMed  Google Scholar 

  • Schijven, J. F., & Hassanizadeh, S. M. (2000). Removal of viruses by soil passage: Overview of modeling, processes, and parameters. Critical Reviews in Environmental Science and Technology,30(1), 49–127.

    Article  CAS  Google Scholar 

  • Schijven, J. F., Hassanizadeh, S. M., & de Bruin, R. H. (2002). Two-site kinetic modeling of bacteriophages transport through columns of saturated dune sand. Journal of Contaminant Hydrology,57(3–4), 259–279.

    Article  CAS  PubMed  Google Scholar 

  • Schijven, J. F., De Bruin, H. A. M., Hassanizadeh, S. M., & de Roda Husman, A. M. (2003). Bacteriophages and clostridium spores as indicator organisms for removal of pathogens by passage through saturated dune sand. Water Research,37(9), 2186–2194.

    Article  CAS  PubMed  Google Scholar 

  • Shi, C., Wei, J., Jin, Y., Kniel, K. E., & Chiu, P. C. (2012). Removal of viruses and bacteriophages from drinking water using zero-valent iron. Separation and Purification Technology,84, 72–78.

    Article  CAS  Google Scholar 

  • Šimůnek, J., Van Genuchten, M. T., & Šejna, M. (2012). The HYDRUS software package for simulating the two-and three-dimensional movement of water, heat, and multiple solutes in variably-saturated porous media. Technical manual, version,2, 258.

  • Stevenson, M. E., Sommer, R., Lindner, G., Farnleitner, A. H., Toze, S., Kirschner, A. K., et al. (2015). Attachment and detachment behavior of human adenovirus and surrogates in fine granular limestone aquifer material. Journal of Environmental Quality,44(5), 1392–1401.

    Article  CAS  PubMed  Google Scholar 

  • Syngouna, V. I., Chrysikopoulos, C. V., Kokkinos, P., Tselepi, M. A., & Vantarakis, A. (2017). Cotransport of human adenoviruses with clay colloids and TiO2 nanoparticles in saturated porous media: Effect of flow velocity. Science of the Total Environment,598, 160–167.

    Article  CAS  Google Scholar 

  • Tesson, V., De Rougemont, A., Capowiez, L., & Renault, P. (2018). Modelling the removal and reversible immobilization of murine noroviruses in a Phaeozem under various contamination and rinsing conditions. European Journal of Soil Science,69(6), 1068–1077.

    Article  CAS  Google Scholar 

  • Tort, L. F. L., Victoria, M., Lizasoain, A. A., Castells, M., Maya, L., & Gómez, M. M., et al. (2015). Molecular epidemiology of group a rotavirus among children admitted to hospital in Salto, Uruguay, 2011–2012: First detection of the emerging genotype G12. Journal of Medical Virology,87(5), 754–763.

    Article  CAS  PubMed  Google Scholar 

  • Tufenkji, N., & Elimelech, M. (2004). Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions. Langmuir,20(25), 10818–10828.

    Article  CAS  PubMed  Google Scholar 

  • Victoria, M., Tort, L. F., García, M., Lizasoain, A., Maya, L., Leite, J. P., et al. (2014). Assessment of gastroenteric viruses from wastewater directly discharged into Uruguay River, Uruguay. Food and Environmental Virology,6(2), 116–124.

    Article  CAS  PubMed  Google Scholar 

  • Victoria, M., Tort, L. F. L., Lizasoain, A., García, M., Castells, M., Berois, M., et al. (2016). Norovirus molecular detection in Uruguayan sewage samples reveals a high genetic diversity and GII. 4 Variant replacement along time. Journal of Applied Microbiology, 120(5), 1427–1435.

    Article  CAS  PubMed  Google Scholar 

  • Walshe, G. E., Pang, L., Flury, M., Close, M. E., & Flintoft, M. (2010). Effects of pH, ionic strength, dissolved organic matter, and flow rate on the co-transport of MS2 bacteriophages with kaolinite in gravel aquifer media. Water Research,44(4), 1255–1269.

    Article  CAS  PubMed  Google Scholar 

  • WHO, World Health Organization. (2014). Preventing diarrhoea through better water, sanitation and hygiene: Exposures and impacts in low- and middle-income countries. Geneva: World Health Organization.

    Google Scholar 

  • Widdowson, M. A., Steele, D., Vojdani, J., Wecker, J., & Parashar, U. (2009). Global rotavirus surveillance: Determining the need and measuring the impact of rotavirus vaccines. The Journal of Infectious Diseases,200(1), S1–S8.

    Article  PubMed  Google Scholar 

  • Wong, K., & Molina, M. (2017). Applying quantitative molecular tools for virus transport studies: Opportunities and challenges. Groundwater,55(6), 778–783.

    Article  CAS  Google Scholar 

  • Wong, K., Voice, T. C., & Xagoraraki, I. (2013). Effect of organic carbon on sorption of human adenovirus to soil particles and laboratory containers. Water Research,47(10), 3339–3346.

    Article  CAS  PubMed  Google Scholar 

  • Wong, K., Bouchard, D., & Molina, M. (2014). Relative transport of human adenovirus and MS2 in porous media. Colloids and Surfaces B: Biointerfaces,122, 778–784.

    Article  CAS  PubMed  Google Scholar 

  • Xagoraraki, I., Yin, Z., & Svambayev, Z. (2014). Fate of viruses in water systems. Journal of Environmental Engineering,140(7), 04014020.

    Article  CAS  Google Scholar 

  • Xu, S., Attinti, R., Adams, E., Wei, J., Kniel, K., Zhuang, J., et al. (2017). Mutually facilitated co-transport of two different viruses through reactive porous media. Water Research,123, 40–48.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, S. Q., Halkosalo, A., Salminen, M., Szakal, E. D., Puustinen, L., & Vesikari, T. (2008). One-step quantitative RT-PCR for the detection of RVA in acute gastroenteritis. Journal of Virological Methods,153(2), 238–240.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Q., Hassanizadeh, S. M., Raoof, A., van Genuchten, M. T., & Roels, S. M. (2012). Modeling virus transport and remobilization during transient partially saturated flow. Vadose Zone Journal. https://doi.org/10.2136/vzj2011.0090.

    Article  Google Scholar 

Download references

Acknowledgements

We want to thank the National research and innovation agency ANII (“Agencia Nacional de Investigación e Innovación”) for the financial support through project FMV_2_2011_1_6927, and Prof. Dr. Majid Hassanizadeh from Utrecht University and Prof. Dr. Jan Willem Foppen from UNESCO-IHE Delft for their selfless support and guidance during the first stages of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Gamazo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamazo, P., Victoria, M., Schijven, J.F. et al. Modeling the Transport of Human Rotavirus and Norovirus in Standardized and in Natural Soil Matrix-Water Systems. Food Environ Virol 12, 58–67 (2020). https://doi.org/10.1007/s12560-019-09414-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12560-019-09414-z

Keywords

Navigation