Skip to main content

Advertisement

Log in

Hybrid Convolutional Neural Network-Multilayer Perceptron Model for Solar Radiation Prediction

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Urgent transition from the dependence on fossil fuels towards renewable energies requires more solar photovoltaic power to be connected to the electricity grids, with reliable supply through accurate solar radiation forecasting systems. This study proposes an innovative hybrid method that integrates convolutional neural network (CNN) with multi-layer perceptron (MLP) to generate global solar radiation (GSR) forecasts. The CMLP model first extracts optimal topological and structural features embedded in predictive variables through a CNN-based feature extraction stage followed by an MLP-based predictive model to generate the GSR forecasts. Predictive variables from observed data and global climate models (GCM) are used to predict GSR at six solar farms in Queensland, Australia. A hybrid-wrapper feature selection method using a random forest-recursive feature elimination (RF-RFE) scheme is used to eradicate redundant predictor features to improve the proposed CMLP model efficiency. The CMLP model has been compared and bench-marked against seven artificial intelligence–based and seven temperature-based deterministic models, showing excellent performance at all solar energy study sites tested over daily, monthly, and seasonal scales. The proposed hybrid CMLP model should be explored as a viable modelling tool for solar energy monitoring and forecasting in real-time energy management systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of Data and Materials

All the data used in this paper can be freely downloaded from the following sources: (1) Scientific Information for Landowners (SILO) https://www.data.qld.gov.au/dataset/silo-climate-database; (2) Coupled Model Intercomparision Phase-5 global climate models (ACCESS1-0 from CSIRO-BOM, Hadley-GEM2-CC from MOHC, and MRI-CGCM3 from MRI).

References

  1. Best R, Burke PJ, Nepal R, Reynolds Z. Effects of rooftop solar on housing prices in Australia.Aust J Agric Resour Econ. 2021.

  2. Peng T, Zhang C, Zhou J, Nazir MS. An integrated framework of Bi-directional Long-Short Term Memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting. Energy. 2021;221.

    Article  Google Scholar 

  3. Lai CS, Zhong C, Pan K, Ng WW, Lai LL. A deep learning based hybrid method for hourly solar radiation forecasting. Expert Syst Appl. 2021;177.

    Article  Google Scholar 

  4. Guermoui M, Melgani F, Danilo C. Multi-step ahead forecasting of daily global and direct solar radiation: a review and case study of Ghardaia region. J Clean Prod. 2018;201:716–34.

    Article  Google Scholar 

  5. Gopi A, Sudhakar K, Keng NW, Krishnan AR. Comparison of normal and weather corrected performance ratio of photovoltaic solar plants in hot and cold climates. Energy Sustain Dev. 2021;65:53–62.

    Article  Google Scholar 

  6. Ahmed AM, Sharma E, Jui SJJ, Deo RC, Nguyen-Huy T, Ali M. Kernel ridge regression hybrid method for wheat yield prediction with satellite-derived predictors. Remote Sens. 2022;14(5):1136.

    Article  Google Scholar 

  7. Balalla DT, Nguyen-Huy T, Deo R. MARS model for prediction of short-and long-term global solar radiation. In: Predictive modelling for energy management and power systems engineering. Netherlands: Elsevier. 2021. p. 391-436.

  8. Alkhayat G, Mehmood R. A review and taxonomy of wind and solar energy forecasting methods based on deep learning. Energy and AI. 2021:100060.

  9. Deo RC, Yaseen ZM, Al-Ansari N, Nguyen-Huy T, Langlands TAM, Galligan L. Modern artificial intelligence model development for undergraduate student performance prediction: an investigation on engineering mathematics courses. IEEE Access. 2020;8:136697–724.

    Article  Google Scholar 

  10. Li B, Zhang J. A review on the integration of probabilistic solar forecasting in power systems. Solar Energy. 2020;210:68–86.

    Article  Google Scholar 

  11. Prasad SMM, Nguyen-Huy T, Deo R. Support vector machine model for multistep wind speed forecasting. In: Predictive modelling for energy management and power systems engineering. Netherlands: Elsevier; 2021. p. 335-89.

  12. Ghimire S, Deo RC, Downs NJ, Raj N. Global solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cities of Queensland Australia. Journal of Cleaner Production. 2019;216:288–310.

    Article  Google Scholar 

  13. Deo RC, Ghimire S, Downs NJ, Raj N. Optimization of windspeed prediction using an artificial neural network compared with a genetic programming model. In: Research anthology on multi-industry uses of genetic programming and algorithms; 2021. p. 116-47.

  14. Sfetsos A, Coonick A. Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques. Solar Energy. 2000;68(2):169–78.

    Article  Google Scholar 

  15. Yacef R, Benghanem M, Mellit A. Prediction of daily global solar irradiation data using Bayesian neural network: a comparative study. Renewable Energy. 2012;48:146–54.

    Article  Google Scholar 

  16. Zou L, Wang L, Lin A, Zhu H, Peng Y, Zhao Z. Estimation of global solar radiation using an artificial neural network based on an interpolation technique in southeast China. J Atmos Sol Terr Phys. 2016;146:110–22.

    Article  Google Scholar 

  17. Lu N, Qin J, Yang K, Sun J. A simple and efficient algorithm to estimate daily global solar radiation from geostationary satellite data. Energy. 2011;36(5):3179–88.

    Article  Google Scholar 

  18. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.

    Article  Google Scholar 

  19. Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313(5786):504–7.

    Article  MathSciNet  MATH  Google Scholar 

  20. Ghimire S, Deo RC, Raj N, Mi J. Deep learning neural networks trained with MODIS satellite-derived predictors for long-term global solar radiation prediction. Energies. 2019;12(12):2407.

    Article  Google Scholar 

  21. Ghimire S, Deo RC, Wang H, Al-Musaylh MS, Casillas-Pérez D, Salcedo-Sanz S. Stacked LSTM sequence-to-sequence autoencoder with feature selection for daily solar radiation prediction: a review and new modeling results. Energies. 2022;15(3):1061.

    Article  Google Scholar 

  22. You W, Zhang H, Zhao X. A Siamese CNN for image steganalysis. IEEE Trans Inf Forensics Secur. 2020;16:291–306.

    Article  Google Scholar 

  23. Ombabi AH, Ouarda W, Alimi AM. Deep learning CNN-LSTM framework for Arabic sentiment analysis using textual information shared in social networks. Soc Netw Anal Min. 2020;10(1):1–13.

    Article  Google Scholar 

  24. Yao Z, Wang Z, Liu W, Liu Y, Pan J. Speech emotion recognition using fusion of three multi-task learning-based classifiers: HSF-DNN. MS-CNN and LLD-RNN Speech Commun. 2020;120:11–9.

    Article  Google Scholar 

  25. Dai H, Hwang HG, Tseng VS. Convolutional neural network based automatic screening tool for cardiovascular diseases using different intervals of ECG signals. Comput Methods Prog Biomed. 2021;203.

    Article  Google Scholar 

  26. Shen Z, Fan X, Zhang L, Yu H. Wind speed prediction of unmanned sailboat based on CNN and LSTM hybrid neural network. Ocean Eng. 2022;254.

    Article  Google Scholar 

  27. Belmahdi B, Louzazni M, El Bouardi A. One month-ahead forecasting of mean daily global solar radiation using time series models. Optik. 2020;219.

    Article  Google Scholar 

  28. Rashid AH, Razzak I, Tanveer M, Robles-Kelly A. Ripnet: A lightweight one-class deep neural network for the identification of rip currents. In: International Conference on Neural Information Processing. Springer; 2020. p. 172-9.

  29. Ganaie MA, Hu M, etal. Ensemble deep learning: a review. arXiv preprint arXiv:2104.02395. 2021.

  30. Zhu B, Feng Y, Gong D, Jiang S, Zhao L, Cui N. Hybrid particle swarm optimization with extreme learning machine for daily reference evapotranspiration prediction from limited climatic data. Comput Electron Agric. 2020;173.

    Article  Google Scholar 

  31. Fan J, Wu L, Ma X, Zhou H, Zhang F. Hybrid support vector machines with heuristic algorithms for prediction of daily diffuse solar radiation in air-polluted regions. Renew Energy. 2020;145:2034–45.

    Article  Google Scholar 

  32. Ghimire S, Deo RC, Raj N, Mi J. Wavelet-based 3-phase hybrid SVR model trained with satellite-derived predictors, particle swarm optimization and maximum overlap discrete wavelet transform for solar radiation prediction. Renew Sust Energ Rev. 2019;113.

    Article  Google Scholar 

  33. Zhang Y, Cui N, Feng Y, Gong D, Hu X. Comparison of BP, PSO-BP and statistical models for predicting daily global solar radiation in arid Northwest China. Comput Electron Agric. 2019;164.

    Article  Google Scholar 

  34. Ghimire S, Bhandari B, Casillas-Pérez D, Deo RC, Salcedo-Sanz S. Hybrid deep CNN-SVR algorithm for solar radiation prediction problems in Queensland. Australia Engineering Applications of Artificial Intelligence. 2022;112.

    Article  Google Scholar 

  35. Ghimire S, Nguyen-Huy T, Deo RC, Casillas-Perez D, Salcedo-Sanz S. Efficient daily solar radiation prediction with deep learning 4-phase convolutional neural network, dual stage stacked regression and support vector machine CNN-REGST hybrid model. Sustain Mater Technol. 2022;32.

    Article  Google Scholar 

  36. Ghimire S, Deo RC, Casillas-Pérez D, Salcedo-Sanz S. Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms. Appl Energy. 2022;316.

    Article  Google Scholar 

  37. Kim TY, Cho SB. Predicting the household power consumption using CNN-LSTM hybrid networks. In: International Conference on Intelligent Data Engineering and Automated Learning. Springer; 2018. p. 481-90.

  38. Jaseena K, Kovoor BC. Decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks. Energy Convers Manag. 2021;234.

    Article  Google Scholar 

  39. Ghimire S, Deo RC, Casillas-Pérez D, Salcedo-Sanz S, Sharma E, Ali M. Deep learning CNN-LSTM-MLP hybrid fusion model for feature optimizations and daily solar radiation prediction. Measurement. 2022:111759.

  40. Yan X, Mohammadian A. Forecasting daily reference evapotranspiration for Canada using the Penman-Monteith model and statistically downscaled global climate model projections. Alex Eng J. 2020;59(2):883–91.

    Article  Google Scholar 

  41. Gouda K, Nahak S, Goswami P. Evaluation of a GCM in seasonal forecasting of extreme rainfall events over continental India. Weather and Climate Extremes. 2018;21:10–6.

    Article  Google Scholar 

  42. Jha MK, Gassman PW. Changes in hydrology and streamflow as predicted by a modelling experiment forced with climate models. Hydrol Proced. 2014;28(5):2772–81.

    Article  Google Scholar 

  43. Rhee J, Im J. Meteorological drought forecasting for ungauged areas based on machine learning: using long-range climate forecast and remote sensing data. Agric For Meteorol. 2017;237:105–22.

    Article  Google Scholar 

  44. Wang L, Liu X, Brown H. Prediction of the impacts of climate change on energy consumption for a medium-size office building with two climate models. Energy Build. 2017;157:218–26.

    Article  Google Scholar 

  45. Huang J, Perry M. A semi-empirical approach using gradient boosting and k-nearest neighbors regression for GEFCom2014 probabilistic solar power forecasting. Int J Forecast. 2016;32(3):1081–6.

    Article  Google Scholar 

  46. Chakravorti T, Nayak N, Bisoi R, Dash P, Tripathy L. A new robust kernel ridge regression classifier for islanding and power quality disturbances in a multi distributed generation based microgrid. Renew Energy Focus. 2019;28:78–99.

    Article  Google Scholar 

  47. Ali M, Prasad R, Xiang Y, Yaseen ZM. Complete ensemble empirical mode decomposition hybridized with random forest and kernel ridge regression model for monthly rainfall forecasts. J Hydrol. 2020;584.

    Article  Google Scholar 

  48. Kiangala SK, Wang Z. An effective adaptive customization framework for small manufacturing plants using extreme gradient boosting-XGBoost and random forest ensemble learning algorithms in an Industry 4.0 environment. Machine Learning with Applications. 2021;4:100024.

  49. Callens A, Morichon D, Abadie S, Delpey M, Liquet B. Using Random forest and Gradient boosting trees to improve wave forecast at a specific location. Appl Ocean Res. 2020;104.

    Article  Google Scholar 

  50. Ghimire S, Deo RC, Downs NJ, Raj N. Self-adaptive differential evolutionary extreme learning machines for long-term solar radiation prediction with remotely-sensed MODIS satellite and Reanalysis atmospheric products in solar-rich cities. Remote Sens Environ. 2018;212:176–98.

    Article  Google Scholar 

  51. Sahu RK, Shaw B, Nayak JR, etal. Short/medium term solar power forecasting of Chhattisgarh state of India using modified TLBO optimized ELM. Eng Sci Technol Int J. 2021.

  52. Liu S, Liu X, Lyu Q, Li F. Comprehensive system based on a DNN and LSTM for predicting sinter composition. Appl Soft Comput. 2020;95.

    Article  Google Scholar 

  53. Han H, Xu L, Cui X, Fan Y. Novel chiller fault diagnosis using deep neural network (DNN) with simulated annealing (SA). J Int Acad Refrig. 2021;121:269–78.

    Article  Google Scholar 

  54. Hargreaves GH, Samani ZA. Estimating potential evapotranspiration. J Irrig Drain Div. 1982;108(3):225–30.

    Article  Google Scholar 

  55. Bristow KL, Campbell GS. On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric For Meteorol. 1984;31(2):159–66.

    Article  Google Scholar 

  56. Goodin DG, Hutchinson J, Vanderlip RL, Knapp M. Estimating solar irradiance for crop modeling using daily air temperature data. Agron J. 1999;91(5):845–51.

    Article  Google Scholar 

  57. Salcedo-Sanz S, Cornejo-Bueno L, Prieto L, Paredes D, García-Herrera R. Feature selection in machine learning prediction systems for renewable energy applications. Renew Sust Energ Rev. 2018;90:728–41.

    Article  Google Scholar 

  58. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989;1(4):541–51.

    Article  Google Scholar 

  59. Dong N, Chang JF, Wu AG, Gao ZK. A novel convolutional neural network framework based solar irradiance prediction method. Int J Electr Power Energy Syst. 2020;114.

    Article  Google Scholar 

  60. Ordóñez FJ, Roggen D. Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors. 2016;16(1):115.

    Article  Google Scholar 

  61. Rodríguez F, Genn M, Fontán L, Galarza A. Very short-term temperature forecaster using MLP and N-nearest stations for calculating key control parameters in solar photovoltaic generation. Sustainable Energy Technol Assess. 2021;45.

    Article  Google Scholar 

  62. Morshed A, Aryal J, Dutta R. Environmental spatio-temporal ontology for the Linked open data cloud. In: 2013 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications. IEEE; 2013. p. 1907-12.

  63. CEDA. Centre for Environmental Data Analysis. CEDA Archive; 2020. Available from: https://archive.ceda.ac.uk/.

  64. CSIRO. The Commonwealth Scientific and Industrial Research Organisation; Bureau of Meteorology. WCRP CMIP5: The CSIRO-BOM team ACCESS1-0 model output collection.: Centre for Environmental Data Analysis; 2017. Available from: https://catalogue.ceda.ac.uk/uuid/98a933094fa44e8cb886649cf3f5ba4c.

  65. MetOffice. Met Office Hadley Centre. WCRP CMIP5: Met Office Hadley Centre (MOHC) HadGEM2-CC model output collection. Centre for Environmental Data Analysis. 2012. Available from: https://catalogue.ceda.ac.uk/uuid/2e4f5b3748874c61a265f58039898ea5.

  66. MetKorean. Meteorological Research Institute of the Korean Meteorological Administration. WCRP CMIP5: Meteorological Research Institute of KMA MRI-CGCM3 model output collection. Centre for Environmental Data Analysis. 2013. Available from: https://catalogue.ceda.ac.uk/uuid/e51a799218a3447d8fde4c7d113dc550.

  67. Govindasamy TR, Chetty N. Machine learning models to quantify the influence of PM10 aerosol concentration on global solar radiation prediction in South Africa. Cleaner Engineering and Technology. 2021;2.

    Article  Google Scholar 

  68. Komer B, Bergstra J, Eliasmith C. Hyperopt-sklearn: automatic hyperparameter configuration for scikit-learn. In: ICML workshop on AutoML. vol.9. Citeseer; 2014. p.50.

  69. Li Y, Jiang J, Gao J, Shao Y, Zhang C, Cui B. Efficient Automatic CASH via Rising Bandits. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol.34; 2020. p. 4763-71.

  70. Yang L, Shami A. On hyperparameter optimization of machine learning algorithms: theory and practice. Neurocomputing. 2020;415:295–316.

    Article  Google Scholar 

  71. Nomura M, Watanabe S, Akimoto Y, Ozaki Y, Onishi M. Warm starting CMA-ES for hyperparameter optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol.35; 2021. p. 9188-96.

  72. Park H, Kim J, Kim M, Kim JH, Choo J, Ha JW, etal. VisualHyperTuner: visual analytics for user-driven hyperparameter tuning of deep neural networks. In: Demo at SysML Conference; 2019. .

  73. Shawky OA, Hagag A, El-Dahshan ESA, Ismail MA. Remote sensing image scene classification using CNN-MLP with data augmentation. Optik. 2020;221.

    Article  Google Scholar 

  74. Ide H, Kurita T. Improvement of learning for CNN with ReLU activation by sparse regularization. In: 2017 International Joint Conference on Neural Networks (IJCNN). IEEE; 2017. p. 2684-91.

  75. Zou F, Shen L, Jie Z, Zhang W, Liu W. A sufficient condition for convergences of Adam and RMSProp. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2019. p. 11127-35.

  76. Zhang Z. Improved Adam optimizer for deep neural networks. In: 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS). IEEE; 2018. p. 1–2.

  77. Ward R, Wu X, Bottou L. AdaGrad stepsizes: sharp convergence over nonconvex landscapes. In: International Conference on Machine Learning. PMLR; 2019. p. 6677-86.

  78. Tieleman T, Hinton G. Divide the gradient by a running average of its recent magnitude. coursera: neural networks for machine learning. Technical Report. 2017.

  79. Ketkar N. Introduction to Keras. In: Deep learning with Python; 2017. p. 97-111.

  80. Chollet F, etal. Keras: the Python deep learning library. Astrophysics Source Code Library. 2018:ascl-1806.

  81. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, etal. Tensorflow: a system for large-scale machine learning. In: 12th \(\{\)USENIX\(\}\) symposium on operating systems design and implementation (\(\{\)OSDI\(\}\) 16); 2016. p. 265-83.

  82. Bergstra J, Yamins D, Cox DD, etal. Hyperopt: a Python library for optimizing the hyperparameters of machine learning algorithms. In: Proceedings of the 12th Python in science conference. vol.13. Citeseer; 2013. p.20.

  83. Chand B, Nguyen-Huy T, Deo RC. Artificial neural networks for prediction of Steadman Heat Index. In: Intelligent data analytics for decision-support systems in hazard mitigation. Singapore: Springer; 2021. p. 293-357.

  84. Ghimire S, Deo RC, Raj N, Mi J. Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms. Appl Energy. 2019;253.

    Article  Google Scholar 

  85. Willmott CJ, Matsuura K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res. 2005;30(1):79–82.

    Article  Google Scholar 

  86. Prasad R, Charan D, Joseph L, Nguyen-Huy T, Deo RC, Singh S. Daily flood forecasts with intelligent data analytic models: multivariate empirical mode decomposition-based modeling methods. In: Intelligent data analytics for decision-support systems in hazard mitigation. Singapore: Springer; 2021. p. 359-81.

  87. Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE. 2007;50(3):885–900.

    Article  Google Scholar 

  88. Ghimire S, Yaseen ZM, Farooque AA, Deo RC, Zhang J, Tao X. Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks. Sci Rep. 2021;11(1):1–26.

    Article  Google Scholar 

  89. Ghimire S. Predictive modelling of global solar radiation with artificial intelligence approaches using MODIS satellites and atmospheric reanalysis data for Australia. University of Southern Queensland; 2019.

  90. Willmott CJ. On the validation of models. Phys Geogr. 1981;2(2):184–94.

    Article  Google Scholar 

  91. Chai T, Draxler RR. Root mean square error (RMSE) or mean absolute error (MAE)?-Arguments against avoiding RMSE in the literature. Geosci Model Dev. 2014;7(3):1247–50.

    Article  Google Scholar 

  92. Gupta HV, Kling H, Yilmaz KK, Martinez GF. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J Hydrol. 2009;377(1–2):80–91.

    Article  Google Scholar 

  93. McKenzie J. Mean absolute percentage error and bias in economic forecasting. Econ Lett. 2011;113(3):259–62.

    Article  MathSciNet  MATH  Google Scholar 

  94. Diebold FX, Mariano RS. Comparing predictive accuracy. J Bus Econ Stat. 2002;20(1):134–44.

    Article  MathSciNet  Google Scholar 

  95. Costantini M, Pappalardo C. Combination of forecast methods using encompassing tests: an algorithm-based procedure. Reihe Ökonomie/Economics Series; 2008.

  96. Roy DK, Lal A, Sarker KK, Saha KK, Datta B. Optimization algorithms as training approaches for prediction of reference evapotranspiration using adaptive neuro fuzzy inference system. Agric Water Manag. 2021;255.

    Article  Google Scholar 

  97. Ertekin C, Yaldiz O. Comparison of some existing models for estimating global solar radiation for Antalya (Turkey). Energy Convers Manag. 2000;41(4):311–30.

    Article  Google Scholar 

  98. Faisal AF, Rahman A, Habib MTM, Siddique AH, Hasan M, Khan MM. Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of Bangladesh. Results in Engineering. 2022;13.

    Article  Google Scholar 

  99. Akkaya B, Çolakoğlu N. Comparison of multi-class classification algorithms on early diagnosis of heart diseases. 2019.

  100. Sharkawy AN. Principle of neural network and its main types. J Adv Appl Computat Math. 2020;7:8–19.

    Article  Google Scholar 

  101. Deo RC, Grant RH, Webb A, Ghimire S, Igoe DP, Downs NJ, et al. Forecasting solar photosynthetic photon flux density under cloud cover effects: novel predictive model using convolutional neural network integrated with long short-term memory network. Stoch Env Res Risk A. 2022:1–38.

  102. Prasad SS, Deo RC, Downs N, Igoe D, Parisi AV, Soar J. Cloud affected solar UV prediction with three-phase wavelet hybrid convolutional long short-term memory network multi-step forecast system. IEEE Access. 2022;10:24704–20.

    Article  Google Scholar 

  103. Chaturvedi D, Isha I. Solar power forecasting: a review. Int J Comput Appl. 2016;145(6):28–50.

    Google Scholar 

  104. Deo RC, Şahin M, Adamowski JF, Mi J. Universally deployable extreme learning machines integrated with remotely sensed MODIS satellite predictors over Australia to forecast global solar radiation: a new approach. Renew Sust Energ Rev. 2019;104:235–61.

    Article  Google Scholar 

Download references

Acknowledgements

Data were acquired from global climate model archives and ground truth observation from the Scientific Information for Landowners (SILO) repository and Coupled Model Intercomparision Phase-5 global climate models (ACCESS1-0 from CSIRO-BOM, Hadley-GEM2-CC from MOHC, and MRI-CGCM3 from MRI) which are greatly acknowledged.

Funding

This research has been partially supported by Spanish Ministry of Science and Innovation (MICINN), through Project Number PID2020-115454GB-C21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Casillas-Pérez.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Competing Interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghimire, S., Nguyen-Huy, T., Prasad, R. et al. Hybrid Convolutional Neural Network-Multilayer Perceptron Model for Solar Radiation Prediction. Cogn Comput 15, 645–671 (2023). https://doi.org/10.1007/s12559-022-10070-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-022-10070-y

Keywords

Navigation