Skip to main content
Log in

Improving the Recall Performance of a Brain Mimetic Microcircuit Model

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

The recall performance of a well-established canonical microcircuit model of the hippocampus, a region of the mammalian brain that acts as a short-term memory, was systematically evaluated. All model cells were simplified compartmental models with complex ion channel dynamics. In addition to excitatory cells (pyramidal cells), four types of inhibitory cells were present: axo-axonic (axonic inhibition), basket (somatic inhibition), bistratified cells (proximal dendritic inhibition) and oriens lacunosum-moleculare (distal dendritic inhibition) cells. All cells’ firing was timed to an external theta rhythm paced into the model by external reciprocally oscillating inhibitory inputs originating from the medial septum. Excitatory input to the model originated from the region CA3 of the hippocampus and provided context and timing information for retrieval of previously stored memory patterns. Model mean recall quality was tested as the number of stored memory patterns was increased against selectively modulated feedforward and feedback excitatory and inhibitory pathways. From all modulated pathways, simulations showed recall performance was best when feedforward inhibition from bistratified cells to pyramidal cell dendrites is dynamically increased as stored memory patterns is increased with or without increased pyramidal cell feedback excitation to bistratified cells. The study furthers our understanding of how memories are retrieved by a brain microcircuit. The findings provide fundamental insights into the inner workings of learning and memory in the brain, which may lead to potential strategies for treatments in memory-related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Amaral D, Lavenex P. Hippocampal neuroanatomy. In: Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J, editors. The hippocampus book. Oxford: University Press; 2007. p. 37–114.

    Google Scholar 

  2. Amit DJ. Modeling brain function: the world of attractor neural networks. New York: Cambridge University Press; 1989.

    Book  Google Scholar 

  3. Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J. The hippocampus book. Oxford: University Press; 2007.

    Google Scholar 

  4. Borhegyi Z, Varga V, Szilagyi N, Fabo D, Freund TF. Phase segregation of medial septal GABAergic neurons during hippocampal theta activity. J Neurosci. 2004;24:8470–9.

    Article  CAS  Google Scholar 

  5. Buckingham J, Willshaw D. On setting unit thresholds in an incompletely connected associative net. Network. 1993;4:441–59.

    Article  Google Scholar 

  6. Chamberland S, Topolnik L. Inhibitory control of hippocampal inhibitory neurons. Front Neurosci. 2012;6:165.

    Article  Google Scholar 

  7. Cutsuridis V, Hasselmo M. GABAergic modulation of gating, timing and theta phase precession of hippocampal neuronal activity during theta oscillations. Hippocampus. 2012;22:1597–621.

    Article  CAS  Google Scholar 

  8. Cutsuridis V, Poirazi P. A computational study on how theta modulated inhibition can account for the long temporal delays in the entorhinal-hippocampal loop. Neurobiol Learn Mem. 2015;120:69–83.

    Article  Google Scholar 

  9. Cutsuridis V, Wenneckers T. Hippocampus, microcircuits and associative memory. Neural Netw. 2009;22(8):1120–8.

    Article  Google Scholar 

  10. Cutsuridis V, Cobb S, Graham BP. Encoding and retrieval in the hippocampal CA1 microcircuit model. Hippocampus. 2010;20:423–46.

    CAS  PubMed  Google Scholar 

  11. de Luca E, Ravasenga T, Petrini EM, Polenghi A, Nieus T, Guazzi S, et al. Inter-synaptic lateral diffusion of GABAA receptors shapes inhibitory synaptic currents. Neuron. 2017;95(1):63–69.e5.

    Article  Google Scholar 

  12. Freund TF, Buzsaki G. Interneurons of the hippocampus. Hippocampus. 1996;6:347–470.

    Article  CAS  Google Scholar 

  13. Ganter P, Szucs P, Paulsen O, Somogyi P. Properties of horizontal axo-axonic cells in stratum oriens of the hippocampal CA1 area of rats in vitro. Hippocampus. 2004;14:232–43.

    Article  Google Scholar 

  14. Graham B, Willshaw D. Improving recall from an associative memory. Biol Cybern. 1995;72:337–46.

    Article  Google Scholar 

  15. Graham B, Willshaw D. Capacity and information efficiency of the associative net. Network. 1997;8:35–54.

    Article  Google Scholar 

  16. Hasselmo M, Bodelon C, Wyble B. A proposed function of the hippocampal theta rhythm: separate phases of encoding and retrieval of prior learning. Neural Comput. 2002;14:793–817.

    Article  Google Scholar 

  17. Hines ML, Carnevale T. The NEURON simulation environment. Neural Comput. 1997;9:1179–209.

    Article  CAS  Google Scholar 

  18. Hunter R, Cobb S, Graham BP. Improving associative memory in a network of spiking neurons. In: Kurkova V, et al., editors. Lecture notes in computer science (LNCS 5164). Berlin Heidelberg: Springer-Verlag; 2008. p. 636–45.

    Google Scholar 

  19. Klausberger T, Magill PJ, Marton LF, David J, Roberts B, Cobden PM, et al. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature. 2003;421:844–8.

    Article  CAS  Google Scholar 

  20. Klausberger T, Marton LF, Baude A, Roberts JD, Magill PJ, Somogyi P. Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Nat Neurosci. 2004;7:41–7.

    Article  CAS  Google Scholar 

  21. Levy W. A sequence predicting CA3 is a flexible associator that learns and uses context to solve hippocampal-like tasks. Hippocampus. 1996;6:579–90.

    Article  CAS  Google Scholar 

  22. Marr D. A simple theory of archicortex. Philos Trans R Soc Lond Ser B Biol Sci. 1971;262(841):23–81.

    CAS  Google Scholar 

  23. Mendoza E, Galarraga E, Tapia D, Laville A, Hernandez-Echeagaray E, Bargas J. Differential induction of long term synaptic plasticity in inhibitory synapses of the hippocampus. Synapse. 2006;60(7):533–42.

    Article  CAS  Google Scholar 

  24. Palm G. On associative memories. Biol Cybern. 1980;36:9–31.

    Article  Google Scholar 

  25. Pelletier JG, Lacaille JC. Long-term synaptic plasticity in hippocampal feedback inhibitory networks. Prog Brain Res. 2008;169:241–50.

    Article  CAS  Google Scholar 

  26. Petersen CCH, Malenka RC, Nicoll RA, Hopfield JJ. All-or none potentiation at CA3-CA1 synapses. Proc Natl Acad Sci U S A. 1998;95:4732–7.

    Article  CAS  Google Scholar 

  27. Poirazzi P, Brannon T, Mel BW. Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron. 2003a;37:977–87.

    Article  Google Scholar 

  28. Poirazzi P, Brannon T, Mel BW. Pyramidal neuron as a 2-layer neural network. Neuron. 2003b;37:989–99.

    Article  Google Scholar 

  29. Santhakumar V, Aradi I, Soltetz I. Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cells types and axonal topography. J Neurophysiol. 2005;93:437–53.

    Article  Google Scholar 

  30. Saraga F, Wu CP, Zhang L, Skinner FK. Active dendrites and spike propagation in multicompartment models of oriens-lacunosum/moleculare hippocampal interneurons. J Physiol. 2003;552:673–89.

    Article  CAS  Google Scholar 

  31. Saraga F, Balena T, Wolansky T, Dickson CT, Woodin MA. Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus. Neuroscience. 2008;155(1):64–75.

    Article  CAS  Google Scholar 

  32. Sommer FT, Wennekers T. Modelling studies on the computational function of fast temporal structure in cortical circuit activity. J Physiol Paris. 2000;94:473–88.

    Article  CAS  Google Scholar 

  33. Sommer FT, Wennekers T. Associative memory in networks of spiking neurons. Neural Netw. 2001;14:825–34.

    Article  CAS  Google Scholar 

  34. Somogyi P, Katona L, Klausberger T, Lasztóczi B, Viney TJ. Temporal redistribution of inhibition over neuronal subcellular domains underlies state-dependent rhythmic change of excitability in the hippocampus. Philos Trans R Soc Lond Ser B Biol Sci. 2013;369(1635):20120518.

    Article  Google Scholar 

  35. Steinbuch K. Non-digital learning matrices as preceptors. Kybernetik. 1961;1:117–24.

    Article  CAS  Google Scholar 

  36. Treves A, Rolls E. Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus. 1992;2:189–200.

    Article  CAS  Google Scholar 

  37. Willshaw D, Buneman O, Longuet-Higgins H. Non-holographic associative memory. Nature. 1969;222:960–2.

    Article  CAS  Google Scholar 

  38. Zarnadze S, Bäuerle P, Santos-Torres J, Böhm C, Schmitz D, Geiger JR, et al. Cell-specific synaptic plasticity induced by network oscillations. Elife. 2016;5:e14912.

    Article  Google Scholar 

  39. Zhang S, Huang K, Hussain A. Learning from few samples with memory network. Cogn Comput. 2018;10(1):15–22.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilis Cutsuridis.

Ethics declarations

Conflict of Interest

The author declares that he has no competing interests.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOC 3513 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cutsuridis, V. Improving the Recall Performance of a Brain Mimetic Microcircuit Model. Cogn Comput 11, 644–655 (2019). https://doi.org/10.1007/s12559-019-09658-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-019-09658-8

Keywords

Navigation