Skip to main content
Log in

The coprolite Lumbricaria Münster in the Early Tithonian of the Neuquén Basin, Argentina: new evidence for a holothurian producer

  • Research Paper
  • Published:
PalZ Aims and scope Submit manuscript

Abstract

Lumbricaria Münster is described for the first time outside the Tethys domain from distal facies of the Tithonian Vaca Muerta Formation, Neuquén Basin, Argentina. The studied material consists of elongate, convolute, cylindrical coprolites, showing an overlapping pattern, and commonly exhibiting constrictions. Internally, coprolites show a densely packed fabric, where the particles show the distinctive morphology of saccocomid ossicles. These specimens are assigned to Lumbricaria intestinum Münster and three morphotypes are defined: (a) morphotype 1 shows a disordered convolute structure; (b) morphotype 2 is shorter and has a non-convolute arrangement; and (c) morphotype 3 has a spiral arrangement. Coprolites are preserved within microbial laminites, as well as concretions in calcareous mudstones. In this paper we discuss the possible producers of these coprolites, where evidence from the studied material would support a holothurian producer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agassiz, L. 1833. Recherches sur les Poissons Fossils. Neuchâtel: Imprimerie de Petitpierre et Prince. https://doi.org/10.3931/e-rara-11962.

    Google Scholar 

  • Bantel, G., G. Schweigert, M. Nose, and H.M. Schulz. 1999. Mikrofazies, Mikro- und Nannofossilien aus dem Nusplinger Plattenkalk (Ober-Kimmeridgium, Schwäbische Alb). Stuttgarter Beiträge zur Naturkunde (B) 279: 1–55.

    Google Scholar 

  • Barnes, R. 1987. Invertebrate zoology. Orlando: Dryden Press.

    Google Scholar 

  • Bathurst, R.G.C. 1995. Burrial diagenesis of limestones under simple overburden. Stylolites, cementation and feedback. Buletin de la Société de France 116: 181–192.

    Google Scholar 

  • Becker, R.T., and J. Kullmann. 1996. Paleozoic ammonoids in space and time. In Ammonoid paleobiology, eds. N.H. Landman, K. Tanabe, and R.A. Davis, 711–753. Boston, MA: Springer. (Topics in Geobiology 13).

    Chapter  Google Scholar 

  • Bertling, M., S.J. Brady, R.G. Bromley, G.R. Demathieu, J. Genise, R. Mikuláš, J.K. Nielsen, A.K. Rindsberg, M. Schlirf, and A. Uchman. 2006. Names for trace fossils: A uniform approach. Lethaia 39: 265–286.

    Article  Google Scholar 

  • Briggs, K. 1985. Deposit feeding by some deep-sea megabenthos from the Venezuela Basin: Selective or non-selective. Marine Ecology 21: 127–134.

    Article  Google Scholar 

  • Brundin, J.N., and R.F. Morgan. 2016. The Canyon Group: A pristine assemblage of Pennsylvanian trace-making activity in Ranger, Texas, United States. In Geological Society of America Annual Meeting. https://doi.org/10.13140/rg.2.2.29501.05608.

  • Capelli, I.A., R.A. Scasso, D.A. Kietzmann, M.F. Cravero, D. Minisini, and J.P. Catalano. 2018. Mineralogical and geochemical trends of the Vaca Muerta-Quintuco Formations in the Puerta Curaco section, Neuquén Basin. Revista de la Asociación Geológica Argentina 75: 210–228.

  • Catalano, J.P., R.S. Scasso, D.A. Kietzmann, K. Fӧllmi, J. Spangenberg, and I.A. Capelli. 2018. Carbonate sedimentology and diagenesis of Vaca Muerta Formation in Puerta Curaco, Neuquén Basin. In 10° Congreso de Exploración y Desarrollo de Hidrocarburos, 1–19.

  • Choquette, P.W., and N.P. James. 1987. Diagenesis in limestones. The deep burrial environment. Geoscience Canada 14: 3–35.

    Google Scholar 

  • Dawbin, W.H. 1949. Auto-evisceration and the regeneration of viscera in the holothurian Stichopus mollis. Transactions and Proceedings of the Royal Society of New Zealand 77: 497–523.

    Google Scholar 

  • Dietl, G., and G. Schweigert. 2001. Im Reich der Meerengel—Fossilien aus dem Nusplinger Plattenkalk. Munich: F. Pfeil Verlag.

    Google Scholar 

  • Fenton, C.L., and A.F. Fenton. 1934. Lumbricaria: A Holothuroid Casting? The Pan-American Geologists 61: 291–292.

    Google Scholar 

  • Fortunatti, N.B., N.N. Cesaretti, and D.E. Cornejo. 2018. Migración primaria de hidrocarburos en bindstones de la Formación Vaca Muerta, Pampa de Tril, Neuquén, Argentina. Revista de la Asociación Geológica Argentina 75: 188–198.

  • Frickhinger, K.A. 1994. Die Fossilien von Solnhofen. Korb: Goldschneck-Verlag.

    Google Scholar 

  • Goldfuss, A. 1831. Petrefacta Germaniae. Düsseldorf: Arnz & Co.

    Google Scholar 

  • Graham, E.R., and J.T. Thompson. 2009. Deposit- and suspension-feeding sea cucumbers (Echinodermata) ingest plastic fragments. Journal of Experimental Marine Biology and Ecology 368: 22–29.

    Article  Google Scholar 

  • Gulisano, C., R. Gutierrez Pleimling, and R.E. Digregorio. 1984. Análisis estratigráfico del intervalo Tithoniano Valanginiano (Formaciones Vaca Muerta, Quintuco y Mulichinco) en el suroeste de la provincia del Neuquén. IX Congreso Geológico Argentino 1: 221–235.

    Google Scholar 

  • Halley, R.B. 1987. Burial diagenesis of carbonate rocks. Colorado School of Mines Quarterly 82: 1–15.

    Google Scholar 

  • Häntzschel, W., F. El-Baz, and G.C. Amstutz. 1968. Coprolites an annotated bibliography. Geological Society of America Memoir 108: 1–132.

    Article  Google Scholar 

  • Haukson, E. 1979. Feeding biology of Stichopus tremulus, a deposit feeding holothurian. Sarsia 64: 155–159.

    Article  Google Scholar 

  • Hess, H. 2002. Remains of Saccocomids (Crinoidea: Echinodermata) from the Upper Jurassic of southern Germany. Stuttgarter Beiträge zur Naturkunde (B) 329: 1–57.

    Google Scholar 

  • Iglesia Llanos, M.P. 2008. Paleogeografía de América del Sur durante el Jurásico. Revista de la Asociación Geológica Argentina 63: 498–511.

    Google Scholar 

  • Iglesia Llanos, M.P., D.A. Kietzmann, M. Kohan Martínez, and R.M. Palma. 2017. Magnetostratigraphy of the Upper Jurassic-Lower Cretaceous of Argentina: Implications for the Jurassic–Cretaceous boundary in the Neuquén Basin. Cretaceous Research 70: 189–208.

    Article  Google Scholar 

  • Janicke, V. 1970. Lumbricaria—ein Cephalopoden-Koprolith. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1970: 50–60.

    Google Scholar 

  • Keupp, H., R. Koch, G. Schweigert, and G. Viohl. 2007. Geological history of the Southern Franconian Alb: The area of the Solnhofen Lithographic Limestone. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 245: 3–21.

    Article  Google Scholar 

  • Kietzmann, D.A., and R.M. Palma. 2009. Microcrinoideos saccocómidos en el Tithoniano de la Cuenca Neuquina. ¿Una presencia inesperada fuera de la región del Tethys? Ameghiniana 46: 695–700.

    Google Scholar 

  • Kietzmann, D.A., and R.M. Palma. 2011. Las tempestitas peloidales de la Formación Vaca Muerta (Tithoniano-Valanginiano) en el sector surmendocino de la Cuenca Neuquina, Argentina. Latin American Journal of Sedimentology and Basin Analysis 18: 121–149.

    Google Scholar 

  • Kietzmann, D.A., R.M. Palma, and G.S. Bressan. 2008. Facies y microfacies de la rampa tithoniana-berriasiana de la Cuenca Neuquina (Formación Vaca Muerta) en la sección del arroyo Loncoche—Malargüe, provincia de Mendoza. Revista de la Asociación Geológica Argentina 63: 696–713.

    Google Scholar 

  • Kietzmann, D.A., R.M. Palma, and B. Ferré. 2010. Interpretation of “Saccocoma microfacies” and their significance in the Tithonian of the Neuquén Basin, Vaca Muerta Formation, Mendoza, Argentina. In IV Simposio Argentino del Jurásico y sus Límites, 31.

  • Kietzmann, D.A., J. Martín-Chivelet, R.M. Palma, J. López-Gómez, M. Lescano, and A. Concheyro. 2011. Evidence of precessional and eccentricity orbital cycles in a Tithonian source rock: The mid-outer carbonate ramp of the Vaca Muerta Formation, Northern Neuquén Basin, Argentina. American Association of Petroleum Geologists Bulletin 95: 1459–1474.

    Article  Google Scholar 

  • Kietzmann, D.A., R.M. Palma, A.C. Riccardi, J. Martín-Chivelet, and J. López-Gómez. 2014. Sedimentology and sequence stratigraphy of a Tithonian—Valanginian carbonate ramp (Vaca Muerta Formation): A misunderstood exceptional source rock in the Southern Mendoza area of the Neuquén Basin, Argentina. Sedimentary Geology 302: 64–86.

    Article  Google Scholar 

  • Kietzmann, D.A., A. Ambrosio, J. Suriano, S. Alonso, F. González Tomassini, G. Depine, and D. Repol. 2016. The Vaca Muerta-Quintuco system (Tithonian—Valanginian) in the Neuquén Basin, Argentina: A view from the outcrops in the Chos Malal fold and thrust belt. American Association of Petroleum Geologists Bulletin 100: 743–771.

    Article  Google Scholar 

  • Kietzmann, D.A., M.P. Iglesia Llanos, D.K. Ivanova, M. Kohan Martínez, and M.A. Sturlesi. 2018. Towards a multidisciplinary chronostratigraphic calibration of the Jurassic-Cretaceous transition in the Neuquén Basin. Revista de la Asociación Geológica Argentina 75: 175–187.

  • Leanza, H.A. 2009. Las principales discordancias del Mesozoico de la Cuenca Neuquina según observaciones de superficie. Revista del Museo Argentino de Ciencias Naturales 11: 145–184.

    Article  Google Scholar 

  • Leanza, H.A., and C.A. Hugo. 1977. Sucesión de amonites y edad de la Formación Vaca Muerta y sincrónicas entre los Paralelos 35º y 40º l.s. Cuenca Neuquina-Mendocina. Revista de la Asociación Geológica Argentina 32: 248–264.

    Google Scholar 

  • Legarreta L., and E. Kozlowski. 1981. Estratigrafía y sedimentología de la Formación Chachao, Provincia de Mendoza. In 8° Congreso Geológico Argentino 2: 521–543.

  • Legarreta, L., and M.A. Uliana. 1991. Jurassic–Cretaceous Marine Oscillations and Geometry of Back Arc Basin, Central Argentina Andes. In Sea level changes at active plate margins: Process and product (= International Association of Sedimentologists, Special Publication 12), ed. D.I.M. McDonald, 429–450. Oxford: IAS.

  • Legarreta, L., and M.A. Uliana. 1996. The Jurassic succession in west central Argentina: Stratal patterns, sequences, and paleogeographic evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 120: 303–330.

    Article  Google Scholar 

  • Lehmann, U., and W. Weitschat. 1973. Zur Anatomie und Ökologie von Ammoniten: Funde von Kropf und Kiemen. Paläontologische Zeitschrift 47: 69–76.

    Article  Google Scholar 

  • Loddington, R. 2011. Marine invertebrates in hypoxia: Developmental, behavioural, physiological and fitness responses. The Plymouth Student Scientist 4: 267–277.

    Google Scholar 

  • Martín-Chivelet, J., R.M. Palma, J. López-Gómez, and D.A. Kietzmann. 2011. Earthquake-induced soft-deformation structures in Upper Jurassic open-marine microbialites (Neuquén Basin, Argentina). Sedimentary Geology 235: 210–221.

    Article  Google Scholar 

  • Miller, A.K., A.M. Kerr, G. Paulay, M. Reich, N.G. Wilson, C. Carvajal, and G.W. Rouse. 2017. Molecular Phylogeny of Extant Holothuroidea (Echinodermata). Molecular Phylogenetics and Evolution 111: 110–131. https://doi.org/10.1016/j.ympev.2017.02.014.

    Article  Google Scholar 

  • Mitchum, R.M., and M. Uliana. 1985. Seismic stratigraphy of carbonate depositional sequences, Upper Jurassic-Lower Cretaceous, Neuquén Basin, Argentina. In Seismic Stratigraphy 2. An integrated approach to hydrocarbon analysis (= American Association of Petroleum Geologists, Memoir 39), eds. B.R. Berg, and D.G. Woolverton, 255–283. Tulsa: AAPG.

  • Moriarty, D.J.W. 1982. Feeding of Holothuria atra and Stichopus chloronotus on bacteria, organic carbon and organic nitrogen in sediments of the Great Barrier Reef. Australian Journal of Marine and Freshwater Research 33: 255–263.

    Article  Google Scholar 

  • Münster, G. 1831. Die Lumbricarien enthaltende Lieferung. In Petrefacta Germaniae, ed. A. Goldfuss, 165–240. Düsseldorf: Arnz & Co.

    Google Scholar 

  • Palma, R.M., G.S. Bressan, and D.A. Kietzmann. 2008. Diagenesis of bioclastic oyster deposits from the Lower Cretaceous (Chachao Formation), Neuquén Basin, Mendoza Province. Carbonates and Evaporites 23: 39–49.

    Article  Google Scholar 

  • Pawson, D.L. 1970. The marine fauna of New Zealand: Sea cucumbers (Echinodermata: Holothuroidea). Bulletin of the New Zealand Department of Industrial Research 201: 1–70.

  • Pawson, D.L. 1978. Some aspects of the biology of deep-sea echinoderms. In Proceedings of the Second Echinoderms Conference, ed. D. Zavodnik, Thalassia Jugoslavica 12[1976](1): 287–293.

  • Portlock, J.E. 1843. Report on the geology of the county of Londonderry and part of Tyrone and Fermanagh, 1–784. Dublin: A. Milliken

    Google Scholar 

  • Purcell, S.W., Ch. Conand, S. Uthicke, and M. Byrne. 2016. Ecological roles of exploited sea cucumbers. In Oceanography and marine biology: An annual review, eds. R.N.D. Hughes, J. Hughes, I.P. Smith, and A.C. Dale, 367–386. London: Taylor & Francis.

    Google Scholar 

  • Ramos, V.A. 2010. The tectonic regime along the Andes: Present-day and Mesozoic regimes. Geological Journal 45: 2–25.

    Article  Google Scholar 

  • Reich, M. 2000. The oldest unequivocal record of fossil Holothuroidea. In Echinoderms 2000: Proceedings of the 10th international echinoderm conference, ed. M. Barker, 143. Dunedin: A. A. Balkema Publishers.

  • Reich, M. 2004. Aspidochirote holothurians (Echinodermata) from the Middle Triassic of southern Germany. In Echinoderms: Munchen. Proceedings of the 11th international echinoderm conference, eds. T. Heinzeller, and J. Nebelsick, 485–486. London: CRC Press.

  • Reich, M. 2010. The oldest synallactid sea cucumber (Echinodermata: Holothuroidea: Aspidochirotida). Paläontologische Zeitschrift 84 (4): 541–546.

    Article  Google Scholar 

  • Reisdorf, A.G., and M. Wuttke. 2012. Re-evaluating Moodie’s opisthotonic-posture hypothesis in fossil vertebrates part I: Reptiles—the taphonomy of the bipedal dinosaurs Compsognathus longipes and Juravenator starki from the Solnhofen Archipelago (Jurassic, Germany). Palaeobiodiversity and Palaeoenvironments 92: 119–168.

    Article  Google Scholar 

  • Riccardi, A.C. 2008. The marine Jurassic of Argentina: A biostratigraphic framework. Episodes 31: 326–335.

    Google Scholar 

  • Riccardi, A. 2015. Remarks on the Tithonian–Berriasian ammonite biostratigraphy of west central Argentina. Volumina Jurassica 13: 23–52.

    Google Scholar 

  • Ristedt, H. 1981. Bactriten aus dem Obersilur Böhmens. Mitteilungen des Geologisch-Paläontologischen Instituts Universität Hamburg 51: 23–26.

    Google Scholar 

  • Roberts, D., and C. Bryce. 1982. Further observations on tentacular feeding mechanisms in holothurians. Journal of Experimental Marine Biology and Ecology 59: 151–163.

    Article  Google Scholar 

  • Roberts, D., A. Gebruk, V. Levin, and B.A.D. Manship. 2000. Feeding and digestive strategies in deposit-feeding holothurians. Oceanography and Marine Biology 38: 257–310.

    Google Scholar 

  • Rogacheva, A., A. Gebruk, and C.H.S. Alt. 2012. Swimming deep-sea holothurians (Echinodermata: Holothuroidea) on the northern Mid-Atlantic Ridge. Zoosymposia 7: 213–224.

    Google Scholar 

  • Röper, M. 2005a. East Bavarian plattenkalk: Different types of Upper Kimmerdigian to Lower Tithonian plattenkalk deposits and facies. Zitteliana B26: 57–70.

    Google Scholar 

  • Röper, M. 2005b. Field Trip C. Lithographic Limestones and Plattenkalk Deposits of the Solnhofen and Mörnsheim Formations near Eichstätt and Solnhofen. Zitteliana B26: 71–85.

    Google Scholar 

  • Röper, M., H. Leich, and M. Rothgaenger. 1999. Die Plattenkalke von Pfalzpaint, Faszination fossiler Quallen. Eichendorf: Eichendorf-Verlag.

    Google Scholar 

  • Rüppell, E. 1830. Abbildungen und Beschreibung einiger neuen order wenig gekannten Versteinerungen aus der Kalkschieferformation von Solenhofen. Frankfurt am Main: Bronner.

    Google Scholar 

  • Scasso, R.A, S.M Alonso, S. Lanés, H. Villar, and H. Lippai. 2005. Geochemistry and petrology of a Middle Tithonian limestone-marl rhythmite in the Neuquén Basin, Argentina: Depositional and burial history. In The Neuquén Basin, Argentina: A Case Study in Sequence Stratigraphy and Basin Dynamics(= Geological Society of London, Special Publication 252)., eds. G.D. Veiga, L.A. Spalletti, J.A. Howell, and E. Schwarz, 207–229. London: Geological Society.

  • Schweigert, G. 2001. On Medusites GERMAR (Coprolite) and true algae from Upper Jurassic lithographic limestones of S Germany. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 2001: 237–249.

    Google Scholar 

  • Schweigert, G., and G. Dietl. 1999. Zur Erhaltung und Einbettung von Ammoniten im Nusplinger Plattenkalk (Oberjura, Südwestdeutschland). Stuttgarter Beiträge zur Naturkunde (B) 272: 1–31.

    Google Scholar 

  • Schweigert, G., G. Dietl, and R. Koch. 2005. Field Trip D: The Nusplingen Plattenkalk and Other Fossil Sites in the Western Swabian Alb (SW Germany). Zitteliana B26: 87–95.

    Google Scholar 

  • Sewell, M.A. 1990. Aspects of the ecology of Stichopus mollis (Echinodermata: Holothuroidea) in north-eastern. New Zealand Journal of Marine and Freshwater Research 24: 97–103.

    Article  Google Scholar 

  • Slater, M.J., A.G. Jeffs, and M.A. Sewell. 2011. Organically selective movement and deposit-feeding in juvenile sea cucumber, Australostichopus mollis determined in situ and in the laboratory. Journal of Experimental Marine Biology and Ecology 409: 315–323.

    Article  Google Scholar 

  • Spalletti, L.A., Z. Gasparini, G. Veiga, E. Schwarz, M. Fernández, and S. Matheos. 1999. Facies anóxicas, procesos deposicionales y herpetofauna de la rampa marina titoniano-berriasiana en la Cuenca Neuquina (Yesera del Tromen), Neuquén, Argentina. Revista Geológica de Chile 26: 109–123.

    Article  Google Scholar 

  • Stipanicic, P.N. 1969. El avance en los conocimientos del Jurásico argentino a partir del esquema de Groeber. Revista de la Asociación Geológica Argentina 24: 367–388.

    Google Scholar 

  • Takemae, N., F. Nakaya, and T. Motokawa. 2009. Low Oxygen Consumption and High Body Content of Catch Connective Tissue Contribute to Low Metabolic Rate of Sea Cucumbers. The Biological Bulletin 216: 45–54.

    Article  Google Scholar 

  • Taki, I. 1941. On keeping octopods in an aquarium for physiological experiments, with remarks on some operative techniques. Journal of the Malacological Society of Japan 10: 139–156.

    Google Scholar 

  • Westermann, G.E.G. 1996. Ammonoid life and habitat. In Ammonoid paleobiology, eds. N.H. Landman, K. Tanabe, and R.A. Davis. 607–707. Boston, MA: Springer. (Topics in Geobiology 13).

    Chapter  Google Scholar 

  • Westermann, B., P. Ruth, H.D. Litzlbauer, I. Beck, K. Beuerlein, and H. Schmidtberg. 2002. The digestive tract of Nautilus pompilius (Cephalopoda, Tetrabranchiata): An X-ray analytical and computational tomography study on the living animal. Journal of Experimental Biology 205: 1617–1624.

    Google Scholar 

  • Wippich, M.G.E., and J. Lehmann. 2004. Allocrioceras from the Cenomanian (Mid-Cretaceous) of the Lebanon and its bearing on the paleobiological interpretation of heteromorphic ammonites. Palaeontology 47: 1093–1107.

    Article  Google Scholar 

  • Wright, S.L., D. Rowe, R.C. Thompson, and T.S. Galloway. 2013. Microplastic ingestion decreases energy reserves in marine worms. Current Biology 23: R1031–R1033.

    Article  Google Scholar 

  • Yang, S. 1983. Early Devonian trace fossils from Liujing, Hengxian, Guangxi, and their paleoecological significance. Regional Geology of China 5(3): 11–22.

    Google Scholar 

  • Zamora, L.N., and A.G. Jeffs. 2013. A Review of the Research on the Australasian Sea Cucumber, Australostichopus mollis (Echinodermata: Holothuroidea) (Hutton 1872), with Emphasis on Aquaculture. Journal of Shellfish Research 32(3): 613–627.

    Article  Google Scholar 

  • Zeiss, A., and H.A. Leanza. 2008. Interesting ammonites from the Upper Jurassic of Argentina and their correlation potential: New possibilities for global correlations at the base of the Upper Tithonian by ammonites, calpionellids and other fossil groups. Newsletters on Stratigraphy 42(3): 223–247.

    Article  Google Scholar 

  • Zeiss, A., and H.A. Leanza. 2010. Upper Jurassic (Tithonian) ammonites from the lithographic limestones of the Zapala region, Neuquén Basin, Argentina. Beringeria 41: 23–74.

    Google Scholar 

  • Zhang, L., Y. Gong, and H. Ma. 2011. The Devonian trace fossils and ichnofacies from South China. Journal of Palaeogeography 13 (4): 397–418.

    Google Scholar 

Download references

Acknowledgements

This research has been done under the framework of the Agencia Nacional de Promoción de la Ciencia y Tecnología PICT-2016-3762 project. We are indebted to Dr. Alberto C. Riccardi (Universidad Nacional de La Plata y Museo, Argentina) for ammonite identifications, and to Dr. Lijun Zhang (China University of Geosciences, Wuhan) for providing us with bibliography and helping us with the translation of papers in Chinese We are also especially grateful to the Barros family for their hospitality and for allowing us to work in their property. We thank the valuable reviews by Brian R. Pratt, Günter Schweigert, and an anonymous reviewer, as well as the PalZ Editor-in-Chief Mike Reich, which allowed us to improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego A. Kietzmann.

Additional information

Handling Editor: Mike Reich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kietzmann, D.A., Bressan, G.S. The coprolite Lumbricaria Münster in the Early Tithonian of the Neuquén Basin, Argentina: new evidence for a holothurian producer. PalZ 93, 357–369 (2019). https://doi.org/10.1007/s12542-019-00447-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12542-019-00447-0

Keywords

Navigation