Skip to main content

Advertisement

Log in

Characterizing the branching architecture of drepanophycalean lycophytes (Lycopsida): an exceptional specimen from the Early Devonian Hunsrück Slate, southwest Germany, and its paleobiological implications

  • Research Paper
  • Published:
PalZ Aims and scope Submit manuscript

Abstract

An exceptionally large and well-preserved drepanophycalean lycophyte specimen from the Early Emsian Hunsrück Slate exhibits branching morphology and architecture that suggest previously unrecognized diversity of drepanophycalean lycophytes in the German Early Devonian. The specimen shows long prostrate axes giving rise to both rooting axes and erect leafy, unbranched axes via K-branching. Rhizomatous growth along the substrate promoted rapid vegetative expansion of the plant forming monoclonal patches, potential adaptations to colonizing an unstable deltaic environment. K-branches including dormant buds may have allowed resurrection of the shoot system following burial by sediment or damage to growing shoot apices. Cutbank erosion may have uprooted parts of the plants, which were then transported into the open marine areas and eventually buried in the Hunsrück Slate depositional environment. We hypothesize that remains of Late Silurian/Early Devonian plants (and possibly Prototaxites) may have drifted for many kilometers and were large enough to raft small organisms over considerable distances. Thus, the Late Silurian/Early Devonian may have witnessed the earliest passive oceanic dispersal by rafting of terrestrial invertebrates and therefore marks a crucial time in Earth’s history with respect to this important paleobiogeographical factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alberti, M. 2017. Prototaxites—Mysteriöse Riesen im rheinischen Unterdevon. Fossilien 34: 14–23.

    Google Scholar 

  • Algeo, T.J., and S.E. Scheckler. 2010. Land plant evolution and weathering rate changes in the Devonian. Journal of Earth Science 21 (Special Issue): 75–78.

    Article  Google Scholar 

  • Ali, J.R., and M. Huber. 2010. Mammalian biodiversity on Madagascar controlled by ocean currents. Nature 463: 653–656.

    Article  Google Scholar 

  • Altmeyer, H. 1978. Prototaxiten im Taunusquarzit. Grondboor en Hamer 32: 122–124.

    Google Scholar 

  • Altmeyer, H. 1979. Prototaxiten im Emsquarzit. Grondboor en Hamer 33: 134–135.

    Google Scholar 

  • Banks, H.P., and J.D. Grierson. 1968. Drepanophycus spinaeformis Göppert in the early Upper Devonian of New York State. Palaeontographica (B: Paläobotanik) 123: 113–120.

    Google Scholar 

  • Barnes, D.K.A., and P. Milner. 2005. Drifting plastic and its consequences for sessile organism dispersal in the Atlantic Ocean. Marine Biology 146: 815–825.

    Article  Google Scholar 

  • Bartels, C., and W. Blind. 1995. Röntgenuntersuchung pyritisch vererzter Fossilien aus dem Hunsrückschiefer (Unter-Devon, Rheinisches Schiefergebirge). Metalla 2(2): 79–100.

    Google Scholar 

  • Bartels, C., D.E.G. Briggs, and G. Brassel. 1998. The fossils of the Hunsrück Slate. Marine life in the Devonian, 1–309. Cambridge: University Press.

    Google Scholar 

  • Bateman, R.M. 1996. An overview of lycophyte phylogeny. In Pteridology in Perspective, eds. J.M. Camus, M. Gibby, and R.J. Johns, 405–415. Kew: Royal Botanic Gardens.

    Google Scholar 

  • Bateman, R.M., P.R. Crane, W.A. DiMichele, P.R. Kenrick, N.P. Rowe, T. Speck, and W.E. Stein. 1998. Early evolution of land plants: Phylogeny, physiology, and ecology of the primary terrestrial radiation. Annual Review of Ecology and Systematics 29: 263–292.

    Article  Google Scholar 

  • Bonamo, P.M., H.P. Banks, and J.D. Grierson. 1988. Leclercqia, Haskinsia, and the role of leaves in delineation of Devonian lycopod genera. Botanical Gazette 149: 222–239.

    Article  Google Scholar 

  • Briggs, D.E.G., R. Raiswell, S.H. Bottrell, D. Hatfield, and C. Bartels. 1996. Controls on the pyritization of exceptionally preserved fossils: An analysis of the Lower Devonian Hunsrück Slate of Germany. American Journal of Science 296: 633–663.

    Article  Google Scholar 

  • Cascales-Miñana, B., and B. Meyer-Berthaud. 2015. Diversity patterns of the vascular plant group Zosterophyllopsida in relation to Devonian paleogeography. Palaeogeography, Palaeoclimatology, Palaeoecology 423: 53–61.

    Article  Google Scholar 

  • Ceccarelli, F.S., B.D. Opell, C.R. Haddad, R.J. Raven, E.M. Soto, and M.J. Ramírez. 2016. Around the world in eight million years: historical biogeography and evolution of the spray zone spider Amaurobioides (Araneae: Anyphaenidae). PLoS ONE 11 (10): e0163740. https://doi.org/10.1371/journal.pone.0163740.

    Article  Google Scholar 

  • Chaloner, W.G. 1967. Lycophyta. In In Traité de paléobotanique, vol. 2. Bryophyta, Psilophyta, Lycophyta, ed. E. Boureau, 435–802. Paris: Masson et Cie.

    Google Scholar 

  • Dawson, J.W. 1859. On fossil plants from the Devonian rocks of Canada. Quarterly Journal of the Geological Society of London 15: 477–488.

    Article  Google Scholar 

  • De Baets, K., C. Klug, D. Korn, C. Bartels, and M. Poschmann. 2013. Emsian Ammonoidea and the age of the Hunsrück Slate (Rhenish Mountains, Western Germany). Palaeontographica (A: Paläozoologie, Stratigraphie) 299(1–6): 1–113.

    Google Scholar 

  • Due, A.D. 2001. Historical biogeography. In Scorpion biology and research, eds. P. Brownell, and G.A. Polis, 334–346. New York: Oxford University Press.

    Google Scholar 

  • Due, A.D., and G.A. Polis. 1985. The biology of Vaejovis littoralis Williams, an intertidal scorpion from Baja California, Mexico. Journal of the Zoological Society of London (A) 207: 563–580.

    Article  Google Scholar 

  • Fairon-Demaret, M. 1977. À propos de certains spécimens de Drepanophycus gaspianus (Dawson) Stockmans, F., 1939, du Dévonien Inférieur de Belgique. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Sciences de la terre 68: 781–790.

    Google Scholar 

  • Fairon-Demaret, M. 1978. Observations nouvelles sur les axes vegetatifs de Drepanophycus spinaeformis Göppert de l’Emsien inferieur des “Nouvelles Carrieres” de Dave, Belgique. Review of Palaeobotany and Palynology 26: 9–20.

    Article  Google Scholar 

  • Franke, C. 2006. Die Klerf-Schichten (Unter-Devon) im Großherzogtum Luxemburg, in der Westeifel (Deutschland) und im Gebiet von Burg Reuland (Belgien): fazielle und biostratigraphische Deutungen. In Beiträge zur Paläontologie des Unterdevons Luxemburgs (1), ed. C. Franke. Ferrantia 46: 42–96.

  • Geng, B.-Y., and W.-Q. Zhu. 1994. New observations on Drepanophycus spinaeformis from the Lower Devonian of Guizhou, China. Acta Phytotaxonomica Sinica 32: 345–348.

    Google Scholar 

  • Gensel, P.G. 1992. Phylogenetic relationships of the zosterophylls and lycopsids: evidence from morphology, paleoecology, and cladistics methods of inference. Annals of the Missouri Botanical Garden 79: 450–473.

    Article  Google Scholar 

  • Gensel, P.G., and H.N. Andrews. 1984. Plant Life in the Devonian, 1–380. New York: Praeger Publishers.

    Google Scholar 

  • Gensel, P.G., and C.M. Berry. 2001. Early lycophyte evolution. American Fern Journal 91: 74–98.

    Article  Google Scholar 

  • Gensel, P.G., M. Kotyk, and J. Basinger. 2001. Morphology of above- and below-ground structures in Early Devonian (Pragian–Emsian) plants. In Plants invade the land. Evolutionary and environmental perspectives, eds. G. Gensel and D. Edwards, 83–102. New York: Columbia University Press.

    Chapter  Google Scholar 

  • Gibling, M.R., N.S. Davies, H.J. Falcon-Lang, A.R. Bashforth, W.A. DiMichele, M.C. Rygel, and A. Ielpi. 2014. Palaeozoic co-evolution of rivers and vegetation: a synthesis of current knowledge. Proceedings of the Geologists’ Association 125: 524–533.

    Article  Google Scholar 

  • Gillespie, R.G., B.G. Baldwin, J.M. Waters, C.I. Fraser, R. Nikula, and G.K. Roderick. 2012. Long-distance dispersal: a framework for hypothesis testing. Trends in Ecology & Evolution 27: 47–56.

    Article  Google Scholar 

  • Glass, A., and D.B. Blake. 2004. Preservation of tube feet in an ophiuroid (Phylum Echinodermata) from the Lower Devonian Hunsrück Slate of Germany and a redescription of Bundenbachia beneckei and Palaeophiomyxa grandis. Paläontologische Zeitschrift 78: 73–95.

    Article  Google Scholar 

  • Göppert, H.R. 1852. Fossile Flora des Übergangsgebirges. Verhandlungen der kaiserlichen leopoldinisch-carolinischen Akademie der Naturforscher 22(Supplement): 1–299.

    Google Scholar 

  • Gossmann, R., and H.J. Jungheim. 2007. Landpflanzen im Verlauf der Erdgeschichte, Teil 2. Aus dem Wasser auf das Land. Fossilien 24: 170–186.

    Google Scholar 

  • Gossmann, R., M. Poschmann, and P. Giesen. 2016. Joint embedment of plants and animals in Lower Devonian beds of the Rhenish Slate Mountains (western Germany). In 25th International Workshop on Plant Taphonomy, November 25-26, 2016, Bonn. Program and Abstract volume, conv. C.T. Gee, and T. Litt, 1 p. Bonn.

  • Grierson, J.D., and H.P. Banks. 1963. Lycopods of the Devonian of New York. Palaeontographica Americana 4: 220–295.

    Google Scholar 

  • Grierson, J.D., and H.P. Banks. 1983. A new genus of lycopods from the Devonian of New York State. Botanical Journal of the Linnean Society 86: 81–101.

    Article  Google Scholar 

  • Hao, S., and J. Xue. 2013. The Early Devonian Posongchong Flora of Yunnan, 1–366. Beijing: Science Press.

    Google Scholar 

  • Harrison, S.E., M.S. Harvey, S.J.B. Cooper, A.D. Austin, and M.G. Rix. 2017. Across the Indian Ocean: a remarkable example of trans-oceanic dispersal in an austral mygalomorph spider. PLoS One 12 (8): e0180139. https://doi.org/10.1371/journal.pone.0180139.

    Article  Google Scholar 

  • Hetherington, A.J., and L. Dolan. 2017. The evolution of lycopsid rooting structures: conservatism and disparity. New Phytologist 215: 538–544.

    Article  Google Scholar 

  • Hohenstein, P. 2004. X-ray imaging for palaeontology. The British Journal of Radiology 77: 420–425.

    Article  Google Scholar 

  • Honegger, R., D. Edwards, L. Axe, and C. Strullu-Derrien. 2017. Fertile Prototaxites taiti: a basal ascomycete with inoperculate, polysporous asci lacking crosiers. Philosophical Transactions of the Royal Society (B: Biological Sciences) 373: 20170146. https://doi.org/10.1098/rstb.2017.0146.

    Article  Google Scholar 

  • Hotton, C.L., F.M. Hueber, D.H. Griffing, and J.S. Bridge. 2001. Early terrestrial plant environments: An example from the Emsian of Gaspé, Canada. In Plants invade the land. Evolutionary and environmental perspectives, eds. P.G. Gensel and D. Edwards, 179–203. New York: Columbia University Press.

    Google Scholar 

  • Hueber, F.M. 1971. Early Devonian land plants from Bathurst Island, District of Franklin. Geological Survey of Canada Paper 71–28: 1–17.

    Google Scholar 

  • Hueber, F.M. 1992. Thoughts on the early lycopsids and zosterophylls. Annals of the Missouri Botanical Garden 79: 474–499.

    Article  Google Scholar 

  • Hueber, F.M. 2001. Rotted wood–alga–fungus: The history and life of Prototaxites Dawson 1859. Review of Palaeobotany and Palynology 116: 123–158.

    Article  Google Scholar 

  • Jansen, U. 2016. Brachiopod faunas, facies and biostratigraphy of the Pridolian to lower Eifelian succession in the Rhenish Massif (Rheinisches Schiefergebirge, Germany). In Devonian climate, sea level and evolutionary events, eds. R.T. Becker, P. Königshof, and C.E. Brett. Geological Society of London, Special Publications 423: 45–122.

  • Kaiser, H., W. Meyer, and H.-J. Schweitzer. 1977. Das pflanzenführende Devon des Rheinlandes. Bonner paläobotanische Mitteilungen 2: 1–25.

    Google Scholar 

  • Kasper, A.E. 1974. The reproductive organs of Kaulangiophyton and Drepanophycus. American Journal of Botany 61(Supplement 5): 16.

    Google Scholar 

  • Kaufmann, B., E. Trapp, K. Mezger, and K. Weddige. 2005. Two new Emsian (Early Devonian) U-Pb zircon ages from volcanic rocks of the Rhenish Massif (Germany): implications for the Devonian time scale. Journal of the Geological Society London 162: 363–371.

    Article  Google Scholar 

  • Kenrick, P., and P.R. Crane. 1997. The origin and early diversification of land plants. A cladistic study, 1–441. Washington: Smithsonian Institution Press.

    Google Scholar 

  • Kerp, H., C.H. Wellman, M. Krings, P. Kearney, and H. Hass. 2013. Reproductive organs and in situ spores of Asteroxylon mackiei Kidston & Lang, the most complex plant from the Lower Devonian Rhynie Chert. International Journal of Plant Sciences 174: 293–308.

    Article  Google Scholar 

  • Kräusel, R., and H. Weyland. 1930. Die Flora des deutschen Unterdevons. Abhandlungen der Preussischen Geologischen Landesanstalt (N.F.) 131: 1–92.

    Google Scholar 

  • Kräusel, R., and H. Weyland. 1935. Neue Pflanzenfunde im rheinischen Unterdevon. Palaeontographica (B: Paläobotanik) 80: 171–190.

    Google Scholar 

  • Kräusel, R., and H. Weyland. 1948. Pflanzenreste aus dem Devon. XIII. Die Devon-Floren Belgiens und des Rheinlandes, nebst Bemerkungen zu einigen ihrer Arten. Senckenbergiana 29: 77–99.

    Google Scholar 

  • Kräusel, R., and H. Weyland. 1949. Pflanzenreste aus dem Devon. XIV. Gilboaphyton und die Protolepidophytales. Senckenbergiana 30: 129–152.

    Google Scholar 

  • Kühl, G., C. Bartels, D.E.G. Briggs, and J. Rust. 2012a. Visions of a Vanished World: The Extraordinary Fossils of the Hunsrück Slate, 1–128. New Haven, London: Yale University Press.

    Google Scholar 

  • Kühl, G., A. Bergmann, J. Dunlop, R.J. Garwood, and J. Rust. 2012b. Redescription and palaeobiology of Palaeoscorpius devonicus Lehmann, 1944 from the Lower Devonian Hunsrück Slate of Germany. Palaeontology 55: 775–787.

    Article  Google Scholar 

  • Kutscher, F. 1975. Rhenopterus diensti, ein Eurypteride im Hunsrückschiefer. Notizblatt des hessischen Landesamtes für Bodenforschung 103: 37–42.

    Google Scholar 

  • Li, C.-S., and D. Edwards. 1995. A re-investigation of Halle’s Drepanophycus spinaeformis Göpp. from the Lower Devonian of Yunnan Province, southern China. Botanical Journal of the Linnean Society 118: 163–192.

    Google Scholar 

  • Li, C.-S., B.-Y. Geng, and F.M. Hueber. 2003. Advances in palaeobotany in China. I. Origin and early evolution of lycophytes. Acta Botanica Sinica 45: 35–39.

    Google Scholar 

  • Li, C.-S., F.M. Hueber, and C.L. Hotton. 2000. A neotype for Drepanophycus spinaeformis Göppert 1852. Canadian Journal of Botany 78: 889–902.

    Article  Google Scholar 

  • Matsunaga, K.K.S., and A.M.F. Tomescu. 2016. Root evolution at the base of the lycophyte clade: insights from an Early Devonian lycophyte. Annals of Botany 117: 585–598.

    Article  Google Scholar 

  • Matsunaga, K.K.S., and A.M.F. Tomescu. 2017. An organismal concept for Sengelia radicans gen. et sp. nov.—morphology and natural history of an Early Devonian lycophyte. Annals of Botany 119: 1097–1113.

    Article  Google Scholar 

  • Mayr, G., H. Alvarenga, and C. Mourer-Chauviré. 2011. Out of Africa: fossils shed light on the origin of the hoatzin, an iconic Neotropic bird. Naturwissenschaften 98: 961–966.

    Article  Google Scholar 

  • Niklas, K.J. 1992. Plant biomechanics. An engineering approach to plant form and function, 1–607. Chicago: University of Chicago Press.

    Google Scholar 

  • Niklas, K.J., and H.P. Banks. 1990. A reevaluation of the Zosterophyllophytina with comments on the origin of lycopods. American Journal of Botany 77: 274–283.

    Article  Google Scholar 

  • Niklas, K.J., and T.D. O’Rourke. 1982. Growth patterns of plants that maximize vertical growth and minimize internal stresses. American Journal of Botany 69: 1367–1374.

    Article  Google Scholar 

  • Poschmann, M. 2012. Ein neues Vorkommen der „Hachenburger Pflanze“sowie von Seeskorpionen (Eurypterida) im Unterdevon (Siegenium) des Lahrbachtales (Westerwald, Rheinland-Pfalz, SW-Deutschland). Mainzer naturwissenschaftliches Archiv 49: 5–12.

    Google Scholar 

  • Poschmann, M. 2016. Der Steinbruch im Kondertal südlich von Koblenz (Rheinland-Pfalz, SW-Deutschland) – eine vorläufige paläontologische Bestandsaufnahme nach Aufsammlungen von Kurt Fabiszisky (†). Mainzer naturwissenschaftliches Archiv 53: 69–90.

    Google Scholar 

  • Poschmann, M., and R. Gossmann. 2014. Wurzelstrukturen früher Gefäßpflanzen aus der Klerf-Formation (Unterdevon, höchstes Unter-Emsium) von Waxweiler (SW-Eifel, Rheinland-Pfalz, SW-Deutschland). Mainzer naturwissenschaftliches Archiv 51: 33–44.

    Google Scholar 

  • Poschmann, M., A. Bergmann, and G. Kühl. 2017. First record of eurypterids (Chelicerata, Eurypterida) from the Lower Devonian (Lower Emsian) Hunsrück Slate (SW Germany). PalZ 91: 163–169.

    Article  Google Scholar 

  • Poschmann, M., J.A. Dunlop, C. Kamenz, and G. Scholtz. 2008. The Lower Devonian scorpion Waeringoscorpio and the respiratory nature of its filamentous structures, with the description of a new species from the Westerwald area, Germany. Paläontologische Zeitschrift 82: 420–438.

    Article  Google Scholar 

  • Raxworthy, C.J., M.R.J. Forstner, and R.A. Nussbaum. 2002. Chameleon radiation by oceanic dispersal. Nature 415: 784–787.

    Article  Google Scholar 

  • Rayner, R.J. 1984. New finds of Drepanophycus spinaeformis Göppert from the Lower Devonian of Scotland. Transactions of the Royal Society of Edinburgh (Earth Sciences) 75: 353–363.

    Article  Google Scholar 

  • Remy, W., D. Remy, and H. Hass. 1997. Organisation, Wuchsformen und Lebensstrategien früher Landpflanzen des Unterdevons. Botanisches Jahrbuch für Systematik 119: 509–562.

    Google Scholar 

  • Richter, Rud. 1941. Marken und Spuren im Hunsrück-Schiefer. 3. Fährten als Zeugnisse des Lebens auf dem Meeres-Grunde. Senckenbergiana 23: 218–260.

    Google Scholar 

  • Schindler, T., and M. Wuttke. 2006. Verkieselte Riesenpilze aus dem Taunusquarzit von Wirschweiler/Idarwald. Mitteilungen des Vereins für Heimatkunde im Landkreis Birkenfeld und der Heimatfreunde Oberstein e.V. 80: 7–9.

    Google Scholar 

  • Schindler, T., O.E. Sutcliffe, C. Bartels, M. Poschmann, and M. Wuttke. 2002. Lithostratigraphical subdivision and chronostratigraphical position of the middle Kaub Formation (Lower Emsian, Lower Devonian) of the Bundenbach area (Hunsrück, SW Germany). Metalla 9(2): 73–88.

    Google Scholar 

  • Schweitzer, H.-J. 1980. Über Drepanophycus spinaeformis Göppert. Bonner paläobotanische Mitteilungen 7: 1–29.

    Google Scholar 

  • Schweitzer, H.-J. 1983. Die Unterdevonflora des Rheinlandes. 1. Teil. Palaeontographica (B: Paläobotanik) 189: 1–138.

    Google Scholar 

  • Schweitzer, H.-J. 1990. Pflanzen erobern das Land. Kleine Senckenberg-Reihe 18: 1–75.

    Google Scholar 

  • Schweitzer, H.-J. 2009. On the origin of the lycopsids. Palaeontographica (B: Paläobotanik) 281: 97–110.

    Article  Google Scholar 

  • Schweitzer, H.-J., and P. Giesen. 1980. Über Taeniophyton inopinatum, Protolycopodites devonicus und Cladoxylon scoparium aus dem Mitteldevon von Wuppertal. Palaeontographica (B: Paläobotanik) 173: 1–25.

    Google Scholar 

  • Seilacher, A. 1960. Strömungsanzeichen im Hunsrückschiefer. Notizblatt des hessischen Landesamtes für Bodenforschung zu Wiesbaden 88: 88–106.

    Google Scholar 

  • Shear, W.A., and P.A. Selden. 2001. Rustling in the undergrowth. Animals in early terrestrial ecosystems. In Plants invade the land. Evolutionary and environmental perspectives, eds. P.G. Gensel, and D. Edwards, 29–51. New York: Columbia University Press.

    Google Scholar 

  • Simpson, G.G. 1940. Mammals and land bridges. Journal of the Washington Academy of Sciences 30(4): 137–163.

    Google Scholar 

  • Solle, G. 1970. Die Hunsrück-Insel im oberen Unterdevon. Notizblatt des Hessischen Landesamtes für Bodenforschung 98: 50–80.

    Google Scholar 

  • Speck, T., and D. Vogellehner. 1988. Biophysical examinations of the bending stability of various stele types and the upright axes of early “vascular” land plants. Botanica Acta 101: 262–268.

    Article  Google Scholar 

  • Stets, J., and A. Schäfer. 2002. Depositional environments in the Lower Devonian siliciclastics of the Rhenohercynian Basin (Rheinisches Schiefergebirge, W-Germany)—case studies and a model. Contributions to Sedimentary Geology 22: 1–78.

    Google Scholar 

  • Stewart, W.N., and G.W. Rothwell. 1993. Paleobotany and the evolution of plants. 2nd ed. 1–521. Cambridge: Cambridge University Press.

    Google Scholar 

  • Størmer, L. 1976. Arthropods from the Lower Devonian (Lower Emsian) of Alken an der Mosel, Germany. Part 5: Myriapoda and additional forms, with general remarks on fauna and problems regarding invasion of land by arthropods. Senckenbergiana lethaea 57: 87–183.

    Google Scholar 

  • Stürmer, W., and F. Schaarschmidt. 1980. Pflanzen im Hunsrückschiefer. Natur und Museum 110: 141–147.

    Google Scholar 

  • Sultan, S.E. 2010. Plant developmental responses to the environment: Eco-devo insights. Current Opinion in Plant Biology 13: 96–101.

    Article  Google Scholar 

  • Sultan, S.E. 2017. Developmental plasticity: re-conceiving the genotype. Interface Focus 7: 20170009. https://doi.org/10.1098/rsfs.2017.0009.

    Article  Google Scholar 

  • Sutcliffe, O.E., D.E.G. Briggs, and C. Bartels. 1999. Ichnological evidence for the environmental setting of the Fossil-Lagerstätten in the Devonian Hunsrück Slate, Germany. Geology 27: 275–278.

    Article  Google Scholar 

  • Sutcliffe, O.E., S.L. Tibbs, and D.E.G. Briggs. 2002. Sedimentology and environmental interpretation of the fine-grained turbidites in the Kaub Formation of the Hunsrück Slate: analysis of a section excavated for the Project Nahecaris. Metalla 9(2): 89–104.

    Google Scholar 

  • Tanner, W.R. 1983. A fossil flora from the Beartooth Butte Formation of Wyoming. Unpublished PhD thesis, 1–222. Carbondale, Ill.: Southern Illinois University.

  • Taylor, T.N., E.L. Taylor, and M. Krings. 2009. Paleobotany. The biology and evolution of fossil plants. 2nd ed. 1–1230. Amsterdam: Elsevier.

    Book  Google Scholar 

  • Thomas, B.A., and S.D. Brack-Hanes. 1984. A new approach to family groupings in the lycophytes. Taxon 33: 247–255.

    Article  Google Scholar 

  • Townsend, T.M., K.A. Tolley, F. Glaw, W. Böhme, and M. Vences. 2011. Eastwards from Africa: palaeocurrent-mediated chameleon dispersal to the Seychelles islands. Biology Letters 7: 225–228.

    Article  Google Scholar 

  • Vidal, N., A. Azvolinsky, C. Cruaud, and S.B. Hedges. 2008. Origin of tropical American burrowing reptiles by transatlantic rafting. Biology Letters 4: 115–118.

    Article  Google Scholar 

  • Xu, H.-H., J. Feng, Q. Jiang, and Y. Wang. 2013. Report of Drepano-phycus Göppert (Lycopsida) from the Middle Devonian of Xinjiang, China. Journal of Systematics and Evolution 51: 765–772.

    Article  Google Scholar 

  • Xue, J.-Z. 2011. Phylogeny of Devonian lycopsids inferred from Bayesian phylogenetic analyses. Acta Geologica Sinica (English Edition) 85: 569–580.

    Article  Google Scholar 

  • Xue, J.-Z. 2013. New material of Hueberia zhichangensis Yang, Li & Edwards, a basal lycopsid from the Early Devonian of Yunnan, China. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 267: 331–339.

    Article  Google Scholar 

  • Xue, J., Z. Deng, P. Huang, K. Huang, M.J. Benton, Y. Cui, D. Wang, J. Liu, B. Shen, J.F. Basinger, and S. Hao. 2016. Belowground rhizomes in paleosols: The hidden half of an Early Devonian vascular plant. Proceedings of the National Academy of Sciences 113: 9451–9456.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Herbert Lutz and Thomas Engel (both Natural History Museum/State Collection of Natural History of Rhineland-Palatinate, Mainz) for providing the specimens in their care, Peter Hohenstein (Lautertal) for the outstanding fossil preparation, and Hans Vogtel (Rhaunen) for taking great care in assembling all relevant parts when finding this unique specimen. Sabine Treptow (Waldesch) greatly helped in the preparation of figures and Manfred Neumann (Direktion Landesarchäologie/Außenstelle Koblenz) provided photographs of the fossil in overall view. We greatly acknowledge the constructive reviews by Dr. Christopher M. Berry (Cardiff) and Prof. Philippe Gerrienne (Liège), as well as the editorial advice provided by Drs. Evelyn Kustatscher (Bolzano) and Mike Reich (Munich).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Poschmann.

Additional information

Handling Editor: Evelyn Kustatscher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poschmann, M., Gossmann, R., Matsunaga, K.K.S. et al. Characterizing the branching architecture of drepanophycalean lycophytes (Lycopsida): an exceptional specimen from the Early Devonian Hunsrück Slate, southwest Germany, and its paleobiological implications. PalZ 94, 1–16 (2020). https://doi.org/10.1007/s12542-018-00443-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12542-018-00443-w

Keywords

Navigation