Skip to main content
Log in

Error Compensation Through Analysis of Force and Deformation in Non-circular Grinding

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

With industrial advancement, the demand for precision parts is increasing. A crankshaft is the main part of an engine, which determines the life and quality of the engine, and is one of the precision parts whose demand is growing. Non-circular grinding is the grinding method used for crankshafts, and it is different from conventional grinding methods. In this study, the grinding force, considering the characteristics of the non-circular grinding, was obtained, and the bending and torsional deformation of the crankshaft caused by the grinding force was predicted. By applying the deformation to the grinding force, a real depth of the cut prediction model that can calculate the grinding force and predict the real depth of cut was proposed. A compensation model that can estimate the set depth of cut was proposed to obtain the desired real depth of cut. Various grinding characteristics related to force and deformation in non-circular grinding were analyzed. It was observed that the grinding force has different values at all grinding points, even if one pin is ground because the change in the workpiece velocity depends on the grinding point. Unlike in general grinding, the tangential force affects the depth of cut. The real depth of cut obtained through the prediction model proposed in this study differed from the set depth of cut by up to 45%. Comparing the compensation model of this study to the conventional method, the former showed approximately 20% improved compensation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

v s :

Wheel velocity

v w :

Workpiece velocity

a :

Depth of cut

F t :

Tangential forces per unit width

F n :

Normal forces per unit width

R :

Distance between the pin and journal

R w :

Radius of pin

R s :

Radius of grinding wheel

P :

Grinding point

ω :

Rotation speed of the crankshaft

φ :

Rotation angle

v x :

Movement velocity of wheel in the x-axis direction

v si :

Wheel velocity due to rotation of the wheel

n :

Crankshaft rotation speed

θ g :

Grinding position angle

φ :

Angle error

E :

Elastic modulus of the crankshaft

L :

Length of the crankshaft

O J :

Center of the journal

O G :

Center of the grinding wheel

O P :

Center of the pin

O P :

Center of the pin changed by angle error

L PG :

Distance between the pin and the grinding wheel

L PG :

Distance between the changed pin and the grinding wheel

L JG :

Distance between the journal and the grinding wheel

δ b :

Bending deformation error

δ t :

Depth of cut error due to the torsional deformation

δ :

Total depth of cut error

References

  1. de Payrebrune, K. M., & Kröger, M. (2016). An integrated model of tool grinding: Challenges, chances and limits of predicting process dynamics. Production Engineering, 10(4–5), 421–432. https://doi.org/10.1007/s11740-016-0687-2

    Article  Google Scholar 

  2. Doman, D. A., Warkentin, A., & Bauer, R. (2009). Finite element modeling approaches in grinding. International Journal of Machine Tools and Manufacture, 49(2), 109–116. https://doi.org/10.1016/j.ijmachtools.2008.10.002

    Article  Google Scholar 

  3. Zahedi, A., & Azarhoushang, B. (2016). FEM based modeling of cylindrical grinding process incorporating wheel topography measurement. Procedia CIRP, 46, 201–204. https://doi.org/10.1016/j.procir.2016.03.179

    Article  Google Scholar 

  4. Oliveira, J. F. G., Silva, E. J., Guo, C., & Hashimoto, F. (2009). Industrial challenges in grinding. CIRP Annals: Manufacturing Technology, 58(2), 663–680. https://doi.org/10.1016/j.cirp.2009.09.006

    Article  Google Scholar 

  5. Malkin, S., & Guo, C. (2008). Grinding technology: theory and application of machining with abrasives. Industrial Press, Inc.

  6. Tönshoff, H. K., Karpuschewski, B., Mandrysch, T., & Inasaki, I. (1998). Grinding process achievements and their consequences on machine tools challenges and opportunities. CIRP Annals, 47(2), 651–668. https://doi.org/10.1016/s0007-8506(07)63247-8

    Article  Google Scholar 

  7. Bellakhdhar, B., Dogui, A., & Ligier, J.-L. (2013). A simplified coupled crankshaft–engine block model. Comptes Rendus Mécanique, 341(11–12), 743–754. https://doi.org/10.1016/j.crme.2013.09.008

    Article  Google Scholar 

  8. Chen, X. M., Han, Q. S., Peng, B. Y., & Li, Q. G. (2016). The X-C linkage grinding force model in CAM grinding. Key Engineering Materials, 693, 1187–1194. https://doi.org/10.4028/www.scientific.net/KEM.693.1187

    Article  Google Scholar 

  9. Deichmüller, M., Denkena, B., De Payrebrune, K. M., Kröger, M., Wiedemann, S., Schröder, A., et al. (2010). Determination of static and dynamic deflections in tool grinding using a Dexel-based material removal simulation. In CIRP 2nd international conference process machine interaction, Vancouver, 2010.

  10. Sun, J., Wang, J., & Gui, C. (2009). Whole crankshaft beam-element finite-element method for calculating crankshaft deformation and bearing load of an engine. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 224(3), 299–303. https://doi.org/10.1243/13506501jet677

    Article  Google Scholar 

  11. Mourelatos, Z. P. (2001). A crankshaft system model for structural dynamic analysis of internal combustion engines. Computers and Structures, 79(20–21), 2009–2027.

    Article  Google Scholar 

  12. Jang, J., & Choi, W. C. (2018). Error compensation using variable stiffness in orbital grinding. International Journal of Precision Engineering and Manufacturing, 19(3), 317–323. https://doi.org/10.1007/s12541-018-0039-6

    Article  Google Scholar 

  13. Shen, N., He, Y., Wu, G., & Tian, Y. (2006). Calculation model of the deformation due to grinding force in crank pin non-circular grinding. In International technology and innovation conference (pp. 1325–1330).

  14. Zhang, M., & Yao, Z. (2015). Force characteristics in continuous path controlled crankpin grinding. Chinese Journal of Mechanical Engineering, 28(2), 331–337. https://doi.org/10.3901/cjme.2015.0107.007

    Article  Google Scholar 

  15. Yu, H. X., Zhang, Y., Pan, X. H., & Xu, M. C. (2012). New approach for noncircular following grinding of crankshaft pin. Advanced Materials Research, 497, 46–55. https://doi.org/10.4028/www.scientific.net/AMR.497.46

    Article  Google Scholar 

  16. Li, J., Qian, H., Li, B., & Shen, N.-Y. (2015). Research on the influences of torsional deformation on contour precision of the crank pin. Advances in Manufacturing, 3(2), 123–129. https://doi.org/10.1007/s40436-015-0108-3

    Article  Google Scholar 

  17. Denkena, B., & Kramer, N. (2006). Monitoring of roundness-errors in continuous path controlled crankshaft grinding processes. In Paper presented at the proceedings of the 21st annual ASPE meeting, ASPE 2006.

  18. Zhang, M., & Yao, Z. (2015). Grinding performance in crankshaft pin journal path-controlled grinding of 40Cr using CBN wheel. The International Journal of Advanced Manufacturing Technology, 82(9–12), 1581–1586. https://doi.org/10.1007/s00170-015-7473-8

    Article  Google Scholar 

  19. Möhring, H. C., Gümmer, O., & Fischer, R. (2011). Active error compensation in contour-controlled grinding. CIRP Annals, 60(1), 429–432. https://doi.org/10.1016/j.cirp.2011.03.033

    Article  Google Scholar 

  20. Denkena, B., & Fischer, R. (2011). Theoretical and experimental determination of geometry deviation in continuous path controlled OD grinding processes. Advanced Materials Research, 223, 784–793. https://doi.org/10.4028/www.scientific.net/AMR.223.784

    Article  Google Scholar 

  21. Ikua, B. W., Tanaka, H., Obata, F., & Sakamoto, S. (2001). Prediction of cutting forces and machining error in ball end milling of curved surfaces—I theoretical analysis. Precision Engineering, 25(4), 266–273.

    Article  Google Scholar 

  22. Li, C., Li, X., Wu, Y., Zhang, F., & Huang, H. (2019). Deformation mechanism and force modelling of the grinding of YAG single crystals. International Journal of Machine Tools and Manufacture, 143, 23–37. https://doi.org/10.1016/j.ijmachtools.2019.05.003

    Article  Google Scholar 

  23. Jiang, Z., Yin, Y., Wang, Q., & Chen, X. (2016). Predictive modeling of grinding force considering wheel deformation for toric fewer-axis grinding of large complex optical mirrors. Journal of Manufacturing Science and Engineering. https://doi.org/10.1115/1.4032084

    Article  Google Scholar 

  24. Maeng, S., Lee, P. A., Kim, B. H., & Min, S. (2020). An analytical model for grinding force prediction in ultra-precision machining of WC with PCD micro grinding tool. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(6), 1031–1045. https://doi.org/10.1007/s40684-020-00199-2

    Article  Google Scholar 

  25. Davim, J. P. (2013). Machining and machine-tools: Research and development. Elsevier.

  26. Walsh, A., Baliga, B., & Hodgson, P. (2004). Force modelling of the crankshaft pin grinding process. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218(3), 219–227.

    Google Scholar 

  27. Chen, W., Xue, J., Tang, D., Chen, H., & Qu, S. (2009). Deformation prediction and error compensation in multilayer milling processes for thin-walled parts. International Journal of Machine Tools and Manufacture, 49(11), 859–864. https://doi.org/10.1016/j.ijmachtools.2009.05.006

    Article  Google Scholar 

  28. Rowe, W. B., Morgan, M. N., Qi, H. S., & Zheng, H. W. (1993). The effect of deformation on the contact area in grinding. CIRP Annals: Manufacturing Technology, 42(1), 409–412. https://doi.org/10.1016/s0007-8506(07)62473-1

    Article  Google Scholar 

  29. Feng, H.-Y., & Menq, C.-H. (1996). A flexible ball-end milling system model for cutting force and machining error prediction. Journal of Manufacturing Science and Engineering, 118(4), 461–469.

    Article  Google Scholar 

  30. Tönshoff, H. K., Peters, J., Inasaki, I., & Paul, T. (1992). Modelling and simulation of grinding processes. CIRP Annals, 41(2), 677–688. https://doi.org/10.1016/s0007-8506(07)63254-5

    Article  Google Scholar 

  31. Brinksmeier, E., & TÖnshoff, H. K., Czenkusch, C., & Heinzel, C. (1998). Modelling and optimization of grinding processes. Journal of Intelligent Manufacturing, 9(4), 303–314.

    Article  Google Scholar 

  32. Jang, J., & Choi, W. C. (2021). Prediction of angle error due to torsional deformation in non-circular grinding. Mechanical Sciences, 12(1), 51–57. https://doi.org/10.5194/ms-12-51-2021

    Article  Google Scholar 

  33. Archer, R. R., Crandall, S. H., Dahl, N. C., Lardner, T. J., & Sivakumar, M. S. (2012). An introduction to mechanics of solids. Tata McGraw-Hill Education.

  34. Kim, P. J., Lee, D. G., & Choi, J. K. (2000). Grinding characteristics of carbon fiber epoxy composite hollow shafts. Journal of Composite Materials, 34(23), 2016–2035. https://doi.org/10.1106/E05m-Cgmf-6u9v-Y596

    Article  Google Scholar 

  35. Hecker, R. L., Liang, S. Y., Wu, X. J., Xia, P., & Jin, D. G. W. (2006). Grinding force and power modeling based on chip thickness analysis. The International Journal of Advanced Manufacturing Technology, 33(5–6), 449–459. https://doi.org/10.1007/s00170-006-0473-y

    Article  Google Scholar 

  36. Pereverzev, P. P., Popova, A. V., & Pimenov, D. Y. (2015). Relation between the cutting force in internal grinding and the elastic deformation of the technological system. Russian Engineering Research, 35(3), 215–217. https://doi.org/10.3103/s1068798x15030156

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo Chun Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, J., Choi, W.C. Error Compensation Through Analysis of Force and Deformation in Non-circular Grinding. Int. J. Precis. Eng. Manuf. 23, 627–638 (2022). https://doi.org/10.1007/s12541-022-00649-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-022-00649-8

Keywords

Navigation