Skip to main content
Log in

Effect of Microstructure on the Mechanical Properties and Fracture Toughness of API X65 Pipeline Steel in the Presence of Hydrogen

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This study investigated the influence of microstructure on the mechanical properties and fracture toughness of API X65 pipeline steel in the presence of hydrogen. In this study, electrochemical method was used for hydrogen charging and indentation technique was applied to obtain the fracture toughness. The results showed that in the presence of hydrogen, elongation (EL%), reduction of area (RA), ductile fracture percentage, and fracture toughness of all microstructures decreased. The microstructure of martensite (M) + bainite (B) + ferrite (F), had the highest hydrogen trapping and uptake (Capp) as 8.58 × 10–6 mol cm−3 and the lowest apparent hydrogen diffusivity (Dapp) as 5.68 × 10−10 m2 s−1; thus, the maximum decrements of 33% in fracture toughness, 40% in ductile fracture percentage, 47% in RA, and 35% in EL% were observed. However, the microstructure of ferrite (F) + degenerated perlite (DP) + martensite-austenite micro constituent (M/A), where the lowest value of 5.85 × 10–6 mol cm−3 for Capp and the highest value of 8.5 × 10–10 m2 s−1 for Dapp had the minimum decrements as 2% in fracture toughness, 10% in ductile fracture percentage, 4% in RA, and 7% in El%. According to the obtained results, depending on the type of microstructures, hydrogen-induced work softening or hardening were observed by decreasing or increasing the yield stress respectively.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Wang, Corros. Sci. 51(12), 2803 (2009)

    Article  CAS  Google Scholar 

  2. H. Asahi, D. Hirakami, S. Yamasaki, ISIJ Int. 43(4), 527 (2003)

    Article  CAS  Google Scholar 

  3. D. Hejazi, A.J. Haq, N. Yazdipour, D.P. Dunne, A. Calka, F. Barbaro, E.V. Pereloma, Mat. Sci. Eng. A 551, 40 (2012)

    Article  CAS  Google Scholar 

  4. G.T. Park, S.U. Koh, H.G. Jung, K.Y. Kim, Corros. Sci. 50(7), 1865 (2008)

    Article  CAS  Google Scholar 

  5. B. Beidokhti, A. Dolati, A.H. Koukabi, Mat. Sci. Eng. A 507(1–2), 167 (2009)

    Article  CAS  Google Scholar 

  6. L. Tau, S.L.I. Chan, C.S. Shin, Corros. Sci. 38(11), 2049 (1996)

    Article  CAS  Google Scholar 

  7. F. Huang, J. Liu, Z.J. Deng, J.H. Cheng, Z.H. Lu, X.G. Li, Mat. Sci. Eng. A 527(26), 6997 (2010)

    Article  CAS  Google Scholar 

  8. T.S. Byun, J.W. Kim, J.H. Hong, J. Nucl. Mater. 252(3), 187 (1998)

    Article  CAS  Google Scholar 

  9. H. Miyazaki, H. Hyuga, K. Hirao, T. Ohji, J. Eur. Ceram. Soc. 27(6), 2347 (2007)

    Article  CAS  Google Scholar 

  10. T. Zhang, Y. Feng, R. Yang, P. Jiang, Scripta Mater. 62(4), 199 (2010)

    Article  CAS  Google Scholar 

  11. K.L. Murty, M.D. Mathew, Y. Wang, V.N. Shah, F.M. Haggag, Int. J. Pres. Ves. Pip. 75(11), 831 (1998)

    Article  CAS  Google Scholar 

  12. F. Yu, P. Y. Ben Jar, M.T. Hendry, in Proceedings of the 2018 Joint Rail Conference. 2018 Joint Rail Conference. Pittsburgh, Pennsylvania, USA. 18–20 April, 2018. Ball Indentation Technique to Estimate Fracture Toughness of High-Strength Rail Steels. (ASME, New York, 2018), p. V001T02A002

  13. J.-S. Lee, J.-I. Jang, B.-W. Lee, Y. Choi, S.G. Lee, D. Kwon, Acta Mater. 54(4), 1101 (2006)

    Article  CAS  Google Scholar 

  14. M. He, F. Li, J. Cai, B. Chen, ​Theor. Appl. Fract. Mec. 56(2), 104 (2011)

    Article  CAS  Google Scholar 

  15. S.-W. Jeon, K.-W. Lee, J.Y. Kim, W.J. Kim, C.-P. Park, D. Kwon, Exp. Mech. 57(7), 1013 (2017)

    Article  Google Scholar 

  16. M.B. Bakirov, E.M. Morozov, I.A. Belunik, E.S. Krutko, Inorg. Mater. 51(15), 1468 (2015)

    Article  CAS  Google Scholar 

  17. J.-S. Lee, J.-I. Jang, K.-B. Yoo, D. Kwon, Key Eng. Mater. 321–323, 480 (2006)

    Article  Google Scholar 

  18. H. Zakerinia, A. Kermanpur, A. Najafizadeh, Int. J. ISSI 6(10), 14 (2009)

    Google Scholar 

  19. M.A.V. Devanathan, Z. Stachurski, J. Electrochem. Soc. 111(5), 619 (1964)

    Article  CAS  Google Scholar 

  20. S.J. Kim, K.Y. Kim, Scripta Mater. 66(12), 1069 (2012)

    Article  CAS  Google Scholar 

  21. S.H. Wang, W.C. Luu, K.F. Ho, J.K. Wu, Mater. Chem. Phys. 77(2), 447 (2003)

    Article  CAS  Google Scholar 

  22. K. Banerjee, U.K. Chatterjee, Scripta Mater. 44(2), 213 (2001)

    Article  CAS  Google Scholar 

  23. S.K. Yen, I.B. Huang, Corrosion 59(11), 995 (2003)

    Article  CAS  Google Scholar 

  24. J. Gong, H. Miao, Z. Peng, Mater. Lett. 58(7-8), 1349 (2004)

    Article  CAS  Google Scholar 

  25. G.M. Pharr, Mat. Sci. Eng. A 253(1-2), 151 (1998)

    Article  Google Scholar 

  26. S. Zügner, K. Marquardt, I. Zimmermann, Eur. J. Pharm. Biopharm. 62(2), 194 (2006)

    Article  CAS  Google Scholar 

  27. W.C. Oliver, G.M. Pharr, J. Mater. Res. 19(1), 3 (2004)

    Article  CAS  Google Scholar 

  28. G.C. Sih, A Special Theory of Crack Propagation. Mechanics of Fracture Initiation and Propagation (Springer, Dordrecht, 1991), pp. 1–22

    Book  Google Scholar 

  29. G.C. Sih, E.P. Chen, Theor. Appl. Fract. Mech. 40(1), 1 (2003)

    Article  CAS  Google Scholar 

  30. L.M. Kachanov, Introduction to continuum damage mechanics (Martinus Nijhoff Publisher, Leiden, 1986), p. 135

    Book  Google Scholar 

  31. J. Lemaitre, J. Dufailly, Eng. Fract. Mech. 28(5-6), 643 (1987)

    Article  Google Scholar 

  32. C.Y. Tang, W.H. Tai, J. Mater. Process. Technol. 99(1-3), 135 (2000)

    Article  Google Scholar 

  33. M. He, F. Li, N. Ali, Mat. Sci. Eng. A 528(3), 832 (2011)

    Article  CAS  Google Scholar 

  34. H. Andersson, J. Mech. Phys. Solids 25(3), 217 (1977)

    Article  Google Scholar 

  35. A.L. Gurson, J. Eng. Mater. Technol. 99(1), 2 (1977)

    Article  Google Scholar 

  36. M.A. Arafin, J.A. Szpunar, Mat. Sci. Eng. A 528(15), 4927 (2011)

    Article  CAS  Google Scholar 

  37. S. Zajac, V. Schwinn, K.H. Tacke, Mater. Sci. Forum 500–501, 387 (2005)

    Article  Google Scholar 

  38. R. de Araujo Silva, L.F.G. de Souza, E. Valencia Morales, P.R. Rios, I. de Souza Bott, Mater. Res. 18(5), 908 (2015)

    Article  CAS  Google Scholar 

  39. V.V. Svishchenko, D.P. Cheprasov, O.V. Antonyuk, Met. Sci. Heat Treat. 46(7-8), 324 (2004)

    Article  CAS  Google Scholar 

  40. Li Wang, J.G. Speer, Microstruct. Anal. 2(4), 268 (2013)

    Article  Google Scholar 

  41. M. Masoumia, C.C. Silva, M. Béreš, D.H. Ladino, H.F.G. de Abreu, Int. J. Hydrog. Energy 42(2), 1318 (2017)

    Article  CAS  Google Scholar 

  42. R. Valentini, A. Solina, S. Matera, P. De Gregorio, Metallurg. Mater. Trans. A 27(12), 3773 (1996)

    Article  Google Scholar 

  43. A.J. Haq, K. Muzaka, D.P. Dunne, A. Calka, E.V. Pereloma, Int. J. Hydrog. Energy 38(5), 2544 (2013)

    Article  CAS  Google Scholar 

  44. A. Turnbull, M.W. Carroll, Corros. Sci. 30(6-7), 667 (1990)

    Article  CAS  Google Scholar 

  45. J.-Y. Lee, S.M. Lee, Surf. Coat. Technol. 28(3–4), 301 (1986)

    Article  CAS  Google Scholar 

  46. W.K. Kim, S.U. Koh, B.Y. Yang, K.Y. Kim, Corros. Sci. 50(12), 3336 (2008)

    Article  CAS  Google Scholar 

  47. E. Fallahmohammadi, F. Bolzoni, G. Fumagalli, G. Re, G. Benassi, L. Lazzari, Int. J. Hydrog. Energy 39(25), 13300 (2014)

    Article  CAS  Google Scholar 

  48. ​L. Scoppio, M. Barteri, in Hydrogen Transport and Cracking in Metals, ed. by A. Turnbull. Proceedings of a Conference Held at the National Physical Laboratory, Teddington, 13-14 April 1994. Methods of hydrogen uptake measurements by electrochemical permeation test on low alloy steels. (The Institute of Materials, London, 1995) p. 204

  49. M.-C. Zhao, B. Tang, Y.-Y. Shan, K. Yang, Metall. Mater. Trans. A 34(5), 1089 (2003)

    Article  Google Scholar 

  50. P. Siahpour, R. Miresmaeili, A.S. Rouhaghdam, T. Indian I. Metals 71(6), 1531 (2018)

    Article  CAS  Google Scholar 

  51. E.V. Chatzidouros, V.J. Papazoglou, D.I. Pantelis, in ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. OMAE2011, Rotterdam, June 19–24, 2011. Hydrogen effect on fracture toughness of API 5L X70, X65 and X52 pipeline steel welds: an overview. vol. 3 (ASME, New York, 2011) p. 251

  52. J. Capelle, J. Gilgert, G. Pluvinage, Hydrogen Effect on Fatigue and Fracture of Pipe Steels (Metz, Ecole Nationale d’Ingénieurs de Metz, 2009), pp. 8–10

    Google Scholar 

  53. S.-I. Komazaki, A. Koyama, T. Misawa, Mater. Trans. 43(9), 2213 (2002)

    Article  CAS  Google Scholar 

  54. T. Yokota, T. Shiraga, ISIJ Int. 43(4), 534 (2003)

    Article  CAS  Google Scholar 

  55. F.-G. Wei, T. Hara, T. Tsuchida, K. Tsuzaki, ISIJ Int. 43(4), 539 (2003)

    Article  CAS  Google Scholar 

  56. Y. Huang, A. Nakajima, A. Nishikata, T. Tsuru, ISIJ Int. 43(4), 548 (2003)

    Article  CAS  Google Scholar 

  57. E. Villalba, A. Atrens, Eng. Fail. Anal. 16(1), 164 (2009)

    Article  CAS  Google Scholar 

  58. G.M. Pressouyre, I.M. Bernstein, Corros. Sci. 18(9), 819 (1978)

    Article  CAS  Google Scholar 

  59. M.F. Stevens, I.M. Bernstein, Metall. Trans. A 20(5), 909 (1989)

    Article  Google Scholar 

  60. V. Kuzucu, M. Aksoy, M.H. Korkut, J. Mater. Process. Technol. 82(1-3), 165 (1998)

    Article  Google Scholar 

  61. S. Kang, Y.-S. Jung, J.-H. Jun, Y.-K. Lee, Mat. Sci. Eng. A 527(3), 745 (2010)

    Article  CAS  Google Scholar 

  62. S. Asher, P.M. Singh, in NACE - International Corrosion Conference Series, Corrosion 2008, New Orleans, March 16-20, 2008. Hydrogen Production and Permeation In Near-Neutral pH Environments (NACE International, Houston, 2008), pp. 084111-0841119

  63. R. Kirchheim, Scripta Mater. 67(9), 767 (2012)

    Article  CAS  Google Scholar 

  64. H. Yu, A. Cocks, E. Tarleton, J. Mech. Phys. Solids 123, 41 (2019)

    Article  CAS  Google Scholar 

  65. M.B. Djukic, G.M. Bakic, V.S. Zeravcic, A. Sedmak, B. Rajicic, Eng. Fract. Mech. 216, 106528 (2019)

    Article  Google Scholar 

  66. M.L. Martin, M. Dadfarnia, A. Nagao, S. Wang, P. Sofronis, Acta Mater. 165, 734 (2019)

    Article  CAS  Google Scholar 

  67. A. Tehranchi, B. Yin, W.A. Curtin, Philos. Mag. 97(6), 400 (2017)

    Article  CAS  Google Scholar 

  68. R.K. Davani, R.M. Zadeh, M. Soltanmohammadi, Mat. Sci. Eng. A 718, 135 (2018)

    Article  CAS  Google Scholar 

  69. Q. Deng, W. Zhao, W. Jiang, T. Zhang, T. Li, Y. Zhao, J. Mater. Eng. Perform. 27(4), 1654 (2018)

    Article  CAS  Google Scholar 

  70. N. Huda, A.R.H. Midawi, J. Gianetto, R. Lazor, A.P. Gerlich, Mat. Sci. Eng. A 662, 481 (2016)

    Article  CAS  Google Scholar 

  71. A. Kumar, A. Singh, Mat. Sci. Eng. A 729, 439 (2018)

    Article  CAS  Google Scholar 

  72. H.A. glan, Z.Y. Liu, M.F. Hassan, M. Fateh, J. Mater. Process. Technol. 151(1-3), 268 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Miresmaeili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbar, M., Miresmaeili, R., Naimi-Jamal, M.R. et al. Effect of Microstructure on the Mechanical Properties and Fracture Toughness of API X65 Pipeline Steel in the Presence of Hydrogen. Met. Mater. Int. 27, 3918–3934 (2021). https://doi.org/10.1007/s12540-020-00882-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00882-8

Keywords

Navigation