Skip to main content
Log in

Metallurgical Assessment of Novel Mg–Sn–La Alloys Produced by High-Pressure Die Casting

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Mg alloys containing Al are widely used for industrial applications, but the use of these alloys as an automotive part is limited due to the low melting temperature of the Mg17Al12 intermetallic phase. Therefore, magnesium alloys without aluminum that can withstand higher operating temperatures are of interest to the automotive industry. The objective of this work is to develop Al-free Mg alloys for industrial applications. In the current work, four types of alloys were produced with varying La contents. The high-pressure die casting method was selected to overcome the problems inherent in the gravity casting method with respect to the production of parts with complex shapes and thin walls. X-ray diffraction analysis revealed that the base alloy (Mg–5Sn wt%) comprises of α-Mg and Mg2Sn phases whereas La containing alloys included intermetallic phases such as LaMg3, Mg17La2, and La5Sn3. Corresponding grain sizes of the alloys with La are lower than those of the Mg5Sn alloy. Due to this lower grain size and emerging dispersoids, the tensile strength of the Mg5Sn4La alloy (205 MPa) is roughly double that of Mg5Sn. Moreover, the addition of the 4% wt. La to the Mg5Sn alloys led to an increase in yield strength and ductility by 25% and 50%, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.E. Friedrich, B.L. Mordike, editors, in (Springer, Berlin, 2006), pp. 499–632

  2. F. Bonollo, N. Gramegna, G. Timelli, JOM 67, 901 (2015)

    Article  Google Scholar 

  3. H.I. Laukli, High Pressure Die Casting of Aluminium and Magnesium Alloys—Grain Structure and Segregation Characteristics, Norwegian University of Science and Technology, 2004

  4. I. Polmear, D. StJohn, J.-F. Nie, M. Qian, Light Alloy, 5th edn. (Elsevier, Boston, 2017), pp. 1–29

    Book  Google Scholar 

  5. B.L. Mordike, T. Ebert, Mater. Sci. Eng. A 302, 37 (2001)

    Article  Google Scholar 

  6. V.V. Ramalingam, P. Ramasamy, M. Das Kovukkal, G. Myilsamy, Met. Mater. Int. (2019)

  7. L.-Y. Chen, J.-Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J.-M. Yang, S. Mathaudhu, X.-C. Li, Nature 528, 539 (2015)

    Article  CAS  Google Scholar 

  8. EEA, EEA Report No 27/2016 Monitoring CO2 Emissions from New Passenger Cars and Vans in 2016 (2016)

  9. Ç. Özay, E.B. Gencer, A. Gökçe, J. Therm. Anal. Calorim. 134, 23 (2018)

    Article  CAS  Google Scholar 

  10. A. Gökçe, F. Findik, A.O. Kurt, Mater. Charact. 62, 730 (2011)

    Article  CAS  Google Scholar 

  11. H.W. Shin, Int. J. Precis. Eng. Manuf. 13, 2011 (2012)

    Article  Google Scholar 

  12. H. Liu, Y. Chen, Y. Tang, S. Wei, G. Niu, J. Alloys Compd. 440, 122 (2007)

    Article  CAS  Google Scholar 

  13. W.W. Jian, G.M. Cheng, W.Z. Xu, H. Yuan, M.H. Tsai, Q.D. Wang, C.C. Koch, Y.T. Zhu, S.N. Mathaudhu, Mater. Res. Lett. 1, 61 (2013)

    Article  CAS  Google Scholar 

  14. M.K. Kulekci, Int. J. Adv. Manuf. Technol. 39, 851 (2008)

    Article  Google Scholar 

  15. A. Luo, M.O. Pekguleryuz, J. Mater. Sci. 29, 5259 (1999)

    Article  Google Scholar 

  16. H. Baker, M.M. Avedesian (eds.), ASM Specialty Handbook: Magnesium and Magnesium Alloys (ASM International, Cleveland, 1999)

    Google Scholar 

  17. I.J. Polmear, Mater. Trans., JIM 37, 12 (1996)

    Article  CAS  Google Scholar 

  18. Y. Lü, Q. Wang, W. Ding, X. Zeng, Y. Zhu, Mater. Lett. 44, 265 (2000)

    Article  Google Scholar 

  19. T.B. Abbott, M.A. Easton, C.H. Caceres, in Handbook of Mechanical Alloy Design, ed. by G.E. Totten, L. Xie, K. Funatani (CRC Press, Boca Raton, 2004), pp. 487–538

    Google Scholar 

  20. C.L. Mendis, C.J. Bettles, M.A. Gibson, C.R. Hutchinson, Mater. Sci. Eng., A 435–436, 163 (2006)

    Article  CAS  Google Scholar 

  21. S. Tekumalla, S. Seetharaman, A. Almajid, M. Gupta, Metals (Basel). 5, 1 (2014)

    Article  CAS  Google Scholar 

  22. N. Hort, Y. Huang, D. Fechner, M. Störmer, C. Blawert, F. Witte, C. Vogt, H. Drücker, R. Willumeit, K.U. Kainer, F. Feyerabend, Acta Biomater. 6, 1714 (2010)

    Article  CAS  Google Scholar 

  23. S.M. Zhu, M.A. Gibson, M.A. Easton, J.F. Nie, Scr. Mater. 63, 698 (2010)

    Article  CAS  Google Scholar 

  24. N. Birbilis, M.A. Easton, A.D. Sudholz, S.M. Zhu, M.A. Gibson, Corros. Sci. 51, 683 (2009)

    Article  CAS  Google Scholar 

  25. S.M. Zhu, M.A. Gibson, J.F. Nie, M.A. Easton, G.L. Dunlop, Metall. Mater. Trans. A 40, 2036 (2009)

    Article  CAS  Google Scholar 

  26. T.L. Chia, M.A. Easton, S.M. Zhu, M.A. Gibson, N. Birbilis, J.F. Nie, Intermetallics 17, 481 (2009)

    Article  CAS  Google Scholar 

  27. S. Zhu, M.A. Easton, T.B. Abbott, J.F. Nie, M.S. Dargusch, N. Hort, M.A. Gibson, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 46, 3543 (2015)

    Article  CAS  Google Scholar 

  28. I.P. Moreno, T.K. Nandy, J.W. Jones, J.E. Allison, T.M. Pollock, Scr. Mater. 45, 1423 (2001)

    Article  CAS  Google Scholar 

  29. I.P. Moreno, T.K. Nandy, J.W. Jones, J.E. Allison, T.M. Pollock, Scr. Mater. 48, 1029 (2003)

    Article  CAS  Google Scholar 

  30. H. Da Zhao, G.W. Qin, Y.P. Ren, W.L. Pei, D. Chen, Y. Guo, Trans. Nonferrous Met. Soc. China 20, s493 (2010)

    Article  CAS  Google Scholar 

  31. Q. Wang, Y. Shen, B. Jiang, A. Tang, J. Song, Z. Jiang, T. Yang, G. Huang, F. Pan, Mater. Sci. Eng. A 735, 131 (2018)

    Article  CAS  Google Scholar 

  32. W. Ding, Y. Chen, S. Xiao, Z. Cui, P. Cheng, J. Rare Earths 35, 585 (2017)

    Article  CAS  Google Scholar 

  33. G. Yarkadaş, L.C. Kumruoğlu, H. Şevik, Mater. Charact. 136, 152 (2018)

    Article  CAS  Google Scholar 

  34. Z.H. Huang, W.H. Liu, W.J. Qi, J. Xu, J. Mater. Eng. 44, 56 (2016)

    CAS  Google Scholar 

  35. J. Luo, R.S. Chen, E.H. Han, Mater. Sci. Forum 747–748, 245 (2013)

    Article  CAS  Google Scholar 

  36. J. Jiang, G. Bi, J. Liu, C.C. Ye, J. Lian, Z. Jiang, J. Magn. Alloys 2, 257 (2014)

    Article  CAS  Google Scholar 

  37. H. Okamoto, J. Phase Equilib. 23, 289 (2002)

    Article  CAS  Google Scholar 

  38. A. Bowles, K. Nogita, M. Dargusch, C. Davidson, J. Griffiths, Mater. Trans. 45, 3114 (2004)

    Article  CAS  Google Scholar 

  39. G.E. Lloyd, Miner. Mag. 51, 3 (1987)

    Article  CAS  Google Scholar 

  40. M. Mezbahul-Islam, A.O. Mostafa, M. Medraj, J. Mater. 2014, 1 (2014)

    Article  CAS  Google Scholar 

  41. M. Cong, Z. Li, J. Liu, X. Miao, B. Wang, Q. Xi, Russ. J. Non-Ferrous Met. 57, 445 (2016)

    Article  Google Scholar 

  42. A. Berche, P. Benigni, J. Rogez, M.-C. Record, J. Therm. Anal. Calorim. 107, 797 (2012)

    Article  CAS  Google Scholar 

  43. S. Wei, Y. Chen, Y. Tang, X. Zhang, M. Liu, S. Xiao, Y. Zhao, Mater. Sci. Eng. A 508, 59 (2009)

    Article  CAS  Google Scholar 

  44. Z. Zhao, P. Bai, R. Guan, V. Murugadoss, H. Liu, X. Wang, Z. Guo, Mater. Sci. Eng. A 734, 200 (2018)

    Article  CAS  Google Scholar 

  45. C.O. Muga, Z.W. Zhang, Adv. Mater. Sci. Eng. 2016, 1 (2016)

    Article  CAS  Google Scholar 

  46. R.G. Guan, Y.F. Shen, Z.Y. Zhao, R.D.K. Misra, Sci. Rep. 6, 1 (2016)

    Article  CAS  Google Scholar 

  47. G.E. Dieter, D.J. Bacon, Mechanical Metallurgy (McGraw-Hill, New York, 1986)

    Google Scholar 

  48. E. Hornbogen, J. Light Met. 1, 127 (2001)

    Article  Google Scholar 

  49. H. Liu, Y. Chen, Y. Tang, S. Wei, G. Niu, Mater. Sci. Eng. A 464, 124 (2007)

    Article  CAS  Google Scholar 

  50. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, M.V. Vedernikov, Phys. Rev. B 74, 2 (2006)

    Article  CAS  Google Scholar 

  51. C.L. Mendis, C.J. Bettles, M.A. Gibson, S. Gorsse, C.R. Hutchinson, Philos. Mag. Lett. 86, 443 (2006)

    Article  CAS  Google Scholar 

  52. E. Franceschi, J. Less-Common Met. 66, 175 (1979)

    Article  CAS  Google Scholar 

  53. M. Wang, R. Pan, P. Li, N. Bian, B. Tang, L. Peng, W. Ding, J. Cent, S. Univ. 21, 2136 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Sakarya University Scientific Research Project Council under Grant [number 2017-09-08-014]. The author also would like to acknowledge funding assistance provided by the Turkish National Scientific Council (Tubitak) via 2219 - International Postdoctoral Research Fellowship Program Grant no 1059B191800747. The help of İpek GÖKÇE, Murat GÖKÇE, Paramjot SINGH and Arulselvan ARUMUGHAM AKILAN in the experimental work are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azim Gökçe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gökçe, A. Metallurgical Assessment of Novel Mg–Sn–La Alloys Produced by High-Pressure Die Casting. Met. Mater. Int. 26, 1036–1044 (2020). https://doi.org/10.1007/s12540-019-00539-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00539-1

Keywords

Navigation