Skip to main content
Log in

Experimental determination of interfacial energies for solid Sn in equilibrium with Sn-Mg-Zn liquid

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The equilibrated grain boundary groove shapes of solid Sn in equilibrium with Sn-Mg-Zn liquid were observed from a quenched sample by using a radial heat flow apparatus. The Gibbs-Thomson coefficient, solid-liquid interfacial energy and grain boundary energy of solid Sn were determined from the observed grain boundary groove shapes. The thermal conductivity of the eutectic solid phase for Sn-8.12 at% Mg-4.97 at% Zn alloy and the thermal conductivity ratio of the liquid phase to the solid phase for Sn-8.12 at% Mg-4.97 at% Zn alloy at eutectic temperature were also measured with a radial heat flow apparatus and a Bridgman-type growth apparatus, respectively. The Gibbs-Thomson coefficient, solid-liquid interfacial energy and grain boundary energy of solid Sn in equilibrium with Sn-Mg-Zn liquid were determined to be (8.3 ± 0.6)×10-8 Km, (118.5 ± 14.2)×10-3 Jm-2 and (225.1 ± 29.3)×10-3 J m-2 respectively from observed grain boundary groove shapes. A comparison of present results for solid Sn in the Sn-8.12 at% Mg-4.97 at% Zn alloy with the results obtained in previous works for similar solid Sn in equilibrium with different binary or ternary liquid was made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Eustathopoulos, M. G. Nicholas, and B. Drevet, Wettability at High Temperatures, p.148, Pergamon Materials Series, Oxford, Pergamon (1999).

    Google Scholar 

  2. J. W. Martin, R. D. Doherty, and B. Cantor, Stability of Microstructure in Metallic Systems, p.27, Cambridge University Press, Cambridge (1997).

    Book  Google Scholar 

  3. D. Turnbull, J. Appl. Phys. 21, 1022 (1950).

    Article  Google Scholar 

  4. D. R. H. Jones, J. Mater. Sci. 9, 1 (1974).

    Article  Google Scholar 

  5. N. Eustathopoulos, Int. Met. Rev. 28, 189 (1983).

    Article  Google Scholar 

  6. G. F. Bolling and W. A. Tiller, J. Appl. Phys. 31, 1345 (1960).

    Article  Google Scholar 

  7. G. E. Nash and M. E. Glicksman, Phil. Mag. 24, 577 (1971).

    Article  Google Scholar 

  8. D. R. H Jones and G. A. Chadwick, J. Cryst. Growth 11, 260 (1971).

    Article  Google Scholar 

  9. R. J. Schaefer, M. E. Glicksman and J. D. Ayers, Phil. Mag. 32, 725 (1975).

    Article  Google Scholar 

  10. S. C. Hardy, Phil. Mag. 35, 471 (1977).

    Article  Google Scholar 

  11. N. B. Singh, M. E. Glicksman, and J. Cryst. Growth 98, 573 (1989).

    Article  Google Scholar 

  12. J. J. Hoyt, M. Asta, T. Haxhimali, A. Karma, R. E. Napolitano, and R. Trivedi, MRS Bulletin 29, 935 (2004).

    Article  Google Scholar 

  13. M. Gündüz and J. D. Hunt, Acta Mater 33, 1651 (1985).

    Article  Google Scholar 

  14. N. Maraşlı and J.D. Hunt, Acta Mater. 44, 1085 (1996).

    Article  Google Scholar 

  15. K. Keşlioglu and N. Maraşlı, Mat. Sci. Eng. A-Struct 369, 294 (2004).

    Article  Google Scholar 

  16. Y. Ocak, S. Akbulut, K. Keşlioglu, and N. Maraşlı, J. Phys. D Appl. 41, 1 (2008).

    Article  Google Scholar 

  17. Y. Ocak, S. Akbulut, K. Keşlioğlu, N. Maraşlı, E. Çadirlı, and H. Kaya, Chinese Phys. B 18(9), 3952 (2009).

    Article  Google Scholar 

  18. A. Bulla, C. Carreno-Bodensiek, B. Pustal, R. Berger, A. Bührig-Polaczek, and A. Ludwig, Metall. and Mater. Trans. A 38, 1956 (2007).

    Article  Google Scholar 

  19. F. Abd El-Salam, A. M. Abd El-Khalek, R. H. Nada, M. R. Nagy, and R. Abd El-Haseeb, Mater. Sci. Eng. A 506, 135 (2009).

    Article  Google Scholar 

  20. G. Derge, A. R. Kommel, and R. F. Mehl, AIME 124, 367 (1937).

    Google Scholar 

  21. B. Saatçi, M. Ari, M. Gündüz, S. Türktekin, F. Meydaneri, S. Durmuş, and M. Özdemir, Continuum Mech. Thermodyn. 25, 739 (2013).

    Article  Google Scholar 

  22. P. Ghosh, M. Mezbahul-Islam, and M. Medraj, CALPHAD 36, 28 (2012).

    Article  Google Scholar 

  23. Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, Thermal Conductivity Metallic Elements and Alloys, vol. 1, p.205, New York, Washington (1970).

    Google Scholar 

  24. Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, Thermal Conductivity Metallic Elements and Alloys, vol. 1, p.389, New York, Washington (1970).

    Google Scholar 

  25. Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, Thermal Conductivity Metallic Elements and Alloys, Vol. 1, p.498, New York, Washington (1970).

    Google Scholar 

  26. E. Öztürk, S. Aksöz, K. Keşlioğlu, and N. Maraşlı, Mater. Chem. and Phys. 139, 153 (2013).

    Article  Google Scholar 

  27. S. Akbulut, Y. Ocak, N. Maraşlı, K. Keşlioğlu, H. Kaya, and E. Çadirli, Mater. Charact. 60, 183 (2009).

    Article  Google Scholar 

  28. Y. Kaygısız, Y. Ocak, S. Aksöz, K. Keşlioğlu, and N. Maraşlı, Thermochim. Acta 520, 25 (2011).

    Article  Google Scholar 

  29. B. Saatçi, N. Maraşlı, and M. Gündüz, Thermochim. Acta 454, 128 (2007).

    Article  Google Scholar 

  30. Y. Kaygısız, Y. Ocak, S. Aksöz, N. Maraşlı, K. Keşlioğlu, E. Çadirli, and H. Kaya, Chem. Phys. Lett. 484, 219 (2010).

    Article  Google Scholar 

  31. E. Öztürk, S. Aksöz, K. Keşlioğlu, and N. Maraşlı, Metall. and Mater. Trans A, 45A, 1161 (2014).

    Article  Google Scholar 

  32. J. W. Christian, The Theory of Transformations in Metals and Alloys Part I, 2nd. ed. p.180, Oxford, Pergamon (1975).

    Google Scholar 

  33. S. Engin, U. Böyük, and N. Maraşlı, Curr. App. Phys. 11, 1060 (2011).

    Article  Google Scholar 

  34. S. Engin, U. Böyük, and N. Maraşlı, J. Alloy Compd. 488, 138 (2009).

    Article  Google Scholar 

  35. Y. Ocak, S. Aksöz, N. Maraşlı, and K. Keşlioğlu, Chem. Phys. Lett. 496, 263 (2010).

    Article  Google Scholar 

  36. L. Garanasy, M. Tegze, and A. Ludwig, Mat. Sci. Eng. AStruct 133, 577 (1991).

    Article  Google Scholar 

  37. H. Jones, Mater. Trans. A A38, 1563 (2007).

    Article  Google Scholar 

  38. B. Li and H. Qin, In Proceedings of the 19th, Pacific Conference on Computer Graphics and Applications, p.49, Pacific Graphics (2011).

    Google Scholar 

  39. B. Li and H. Qin, Computer Graphics, 36, 329 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kâzım Keşlioğlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altıntas, Y., Öztürk, E., Aksöz, S. et al. Experimental determination of interfacial energies for solid Sn in equilibrium with Sn-Mg-Zn liquid. Met. Mater. Int. 21, 286–294 (2015). https://doi.org/10.1007/s12540-015-4148-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-4148-9

Keywords

Navigation