Skip to main content
Log in

Pharmacogenomic Cluster Analysis of Lung Cancer Cell Lines Provides Insights into Preclinical Model Selection in NSCLC

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Human lung cell lines are utilized widely for investigating tumor biology, experimental therapy, anticancer drug screening and biomarkers identification. However, the consistency of drug responses of these established cell lines and non-small cell lung cancer (NSCLC) is uncertain. In this study, we assessed the drug response consistency between lung cell lines and NSCLC tumors in The Cancer Genome Atlas by hierarchical clustering using copy number variations in driver genes, and profiled the molecular patterns and correlations in cell lines. We found that some frequently used cell lines of NSCLC subtypes were not clustered with their matched subtypes of tumor. Mutation profiles in the oxidative stress response and squamous differentiation pathway in lung cell lines were in concordance with lung squamous cell carcinoma. Furthermore, lung cell lines and tumors in the same sub-cluster had very similar responses to certain drugs but some were inconsistent, suggesting that clustering through copy number variation data could capture part of the suitability of lung cell lines. The analysis of these results could aid investigators in evaluating drug response models and eventually enabling personalized treatment recommendations for individual patients with NSCLC.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data and material are presented within the manuscript.

Code Availability

The codes used in this manuscript were conducted in R packages.

References

  1. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. Graham S, Shaban M, Qaiser T et al (2018) Classification of lung cancer histology images using patch-level summary statistics. In: Med Imaging 2018: Digit Pathol. https://doi.org/10.1117/12.2293855

    Article  Google Scholar 

  3. Greenlee RT, Murray T, Bolden S, Wingo PA (2000) Cancer statistics, 2000. CA Cancer J Clin 50:7–33. https://doi.org/10.3322/canjclin.50.1.7

    Article  CAS  PubMed  Google Scholar 

  4. Hutter C, Zenklusen JC (2018) The cancer genome atlas: creating lasting value beyond its data. Cell 173:283–285. https://doi.org/10.1016/j.cell.2018.03.042

    Article  CAS  PubMed  Google Scholar 

  5. Zhang J, Bajari R, Andric D et al (2019) The international cancer genome consortium data portal. Nat Biotechnol 37:367–369. https://doi.org/10.1038/s41587-019-0055-9

    Article  CAS  PubMed  Google Scholar 

  6. Hammerman PS, Lawrence MS, Voet D et al (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489:519–525. https://doi.org/10.1038/nature11404

    Article  CAS  Google Scholar 

  7. Collisson EA, Campbell JD, Brooks AN et al (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature 511:543–550. https://doi.org/10.1038/nature13385

    Article  CAS  Google Scholar 

  8. Herbst RS, Morgensztern D, Boshoff C (2018) The biology and management of non-small cell lung cancer. Nature 553:446–454. https://doi.org/10.1038/nature25183

    Article  CAS  PubMed  Google Scholar 

  9. Kim HS, Mitsudomi T, Soo RA, Cho BC (2013) Personalized therapy on the horizon for squamous cell carcinoma of the lung. Lung Cancer 80:249–255. https://doi.org/10.1016/j.lungcan.2013.02.015

    Article  PubMed  Google Scholar 

  10. Yuan M, Huang L-L, Chen J-H et al (2019) The emerging treatment landscape of targeted therapy in non-small-cell lung cancer. Signal Transduct Target Ther 4:61–61. https://doi.org/10.1038/s41392-019-0099-9

    Article  PubMed  PubMed Central  Google Scholar 

  11. Goodspeed A, Heiser LM, Gray JW, Costello JC (2016) Tumor-derived cell lines as molecular models of cancer pharmacogenomics. Mol Cancer Res 14:3–13. https://doi.org/10.1158/1541-7786.MCR-15-0189

    Article  CAS  PubMed  Google Scholar 

  12. Barretina J, Caponigro G, Stransky N et al (2012) The Cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483:603–607. https://doi.org/10.1038/nature11003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang W, Soares J, Greninger P et al (2013) Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 41:D955–D961. https://doi.org/10.1093/nar/gks1111

    Article  CAS  PubMed  Google Scholar 

  14. Tate JG, Bamford S, Jubb HC et al (2019) COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res 47:D941–D947. https://doi.org/10.1093/nar/gky1015

    Article  CAS  PubMed  Google Scholar 

  15. Mouradov D, Sloggett C, Jorissen RN et al (2014) Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res 74:3238–3247. https://doi.org/10.1158/0008-5472.CAN-14-0013

    Article  CAS  PubMed  Google Scholar 

  16. Sinha R, Winer AG, Chevinsky M et al (2017) Analysis of renal cancer cell lines from two major resources enables genomics-guided cell line selection. Nat Commun 8:15165. https://doi.org/10.1038/ncomms15165

    Article  PubMed  PubMed Central  Google Scholar 

  17. Landa I, Pozdeyev N, Korch C et al (2019) Comprehensive genetic characterization of human thyroid cancer cell lines: a validated panel for preclinical studies. Clin Cancer Res 25:3141–3151. https://doi.org/10.1158/1078-0432.CCR-18-2953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Najgebauer H, Yang M, Francies HE et al (2020) CELLector: genomics-guided selection of cancer in vitro models. Cell Syst 10:424-432.e6. https://doi.org/10.1016/j.cels.2020.04.007

    Article  CAS  PubMed  Google Scholar 

  19. Zhao N, Liu Y, Wei Y et al (2017) Optimization of cell lines as tumour models by integrating multi-omics data. Brief Bioinform 18:515–529. https://doi.org/10.1093/bib/bbw082

    Article  CAS  PubMed  Google Scholar 

  20. Hynds RE, Frese KK, Pearce DR et al (2021) Progress towards non-small-cell lung cancer models that represent clinical evolutionary trajectories. Open Biol 11:200247. https://doi.org/10.1098/rsob.200247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stransky N, Ghandi M, Kryukov GV et al (2015) Pharmacogenomic agreement between two cancer cell line data sets. Nature 528:84–87. https://doi.org/10.1038/nature15736

    Article  CAS  PubMed Central  Google Scholar 

  22. Goldman M, Craft B, Brooks A et al (2019) The UCSC Xena platform for public and private cancer genomics data visualization and interpretation. bioRxiv. https://doi.org/10.1101/326470

    Article  Google Scholar 

  23. Ding Z, Zu S, Gu J (2016) Evaluating the molecule-based prediction of clinical drug responses in cancer. Bioinformatics 32:2891–2895. https://doi.org/10.1093/bioinformatics/btw344

    Article  CAS  PubMed  Google Scholar 

  24. Skidmore ZL, Wagner AH, Lesurf R et al (2016) GenVisR: genomic visualizations in R. Bioinformatics 32:3012–3014. https://doi.org/10.1093/bioinformatics/btw325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Akbani R, Akdemir KC, Aksoy BA et al (2015) Genomic classification of cutaneous melanoma. Cell 161:1681–1696. https://doi.org/10.1016/j.cell.2015.05.044

    Article  CAS  Google Scholar 

  26. Nazari Z, Kang D, Asharif MR et al (2015) A new hierarchical clustering algorithm. In: 2015 Int Conf Intell Inform Biomed Sci (ICIIBMS). https://doi.org/10.1109/ICIIBMS.2015.7439517

    Article  Google Scholar 

  27. P S, Gupta S, (2011) A comparative study on distance measuring approaches for clustering. Int J Res Comput Sci 2:29–31. https://doi.org/10.7815/ijorcs.21.2011.011

    Article  Google Scholar 

  28. Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244. https://doi.org/10.1080/01621459.1963.10500845

    Article  Google Scholar 

  29. Xu Q, Zhang Q, Liu J, Luo B (2020) Efficient synthetical clustering validity indexes for hierarchical clustering. Expert Syst Appl 151:113367. https://doi.org/10.1016/j.eswa.2020.113367

    Article  Google Scholar 

  30. Nana FA, Lecocq M, Ladjemi MZ et al (2019) Therapeutic potential of focal adhesion kinase inhibition in small cell lung cancer. Mol Cancer Ther 18:17–27. https://doi.org/10.1158/1535-7163.MCT-18-0328

    Article  CAS  Google Scholar 

  31. Hecker L (2018) Mechanisms and consequences of oxidative stress in lung disease: therapeutic implications for an aging populace. Am J Physiol-Lung Cell Mol Physiol 314:1642–1653. https://doi.org/10.1152/ajplung.00275.2017

    Article  CAS  Google Scholar 

  32. Inamura K (2017) Lung cancer: understanding its molecular pathology and the 2015 WHO classification. Front Oncol 7:193. https://doi.org/10.3389/fonc.2017.00193

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the grants from the National Natural Science Foundation of China (62102004), the Natural Science Young Foundation of Anhui (2008085QF293), the Natural Science Young Foundation of Anhui Agricultural University (2019zd12), the Introduction and Stabilization of Talent Project of Anhui Agricultural University (yj2019-32), and the Graduate Innovation Fund of Anhui Agricultural University (2021yjs-53).

Author information

Authors and Affiliations

Authors

Contributions

YS: conceptualization, data curation, methodology, visualization, and writing-original draft. YX: data curation, software, and methodology. XH: data curation and visualization. YZ: methodology and writing-review and editing. ZY: conceptualization, supervision, writing-review and editing, and funding acquisition. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhenyu Yue.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Xiang, Y., Huang, X. et al. Pharmacogenomic Cluster Analysis of Lung Cancer Cell Lines Provides Insights into Preclinical Model Selection in NSCLC. Interdiscip Sci Comput Life Sci 14, 712–721 (2022). https://doi.org/10.1007/s12539-022-00517-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-022-00517-z

Keywords

Navigation