Skip to main content
Log in

Hammerhead Ribozymes in Archaeal Genomes: A Computational Hunt

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Hammerhead ribozymes (HHRs) are small self-cleaving RNAs, first discovered in viroids and satellite RNAs of plant viruses. They are composed of a catalytic core of conserved nucleotides flanked by three helices. More recently, hammerhead-encoding sequences have been identified in the genomes of many eukaryotes, prokaryotes and other non-viral species regulating various functions. In this study we have explored the Archaeal domain to identify HHRs using three different bioinformatics approach. Our study reveals four putative hits of HHRs type I and type II in the group Thaumarchaeota and Euryarchaeota in the Archaeal domain, one of which is the instance of HHR 1 in C. symbiosum A, already identified in a previous study. These HHRs are very similar to those previously described in terms of the conservation of their catalytic core. Based on 3-D structure analysis and free energy, these instances were concluded as putative HHRs. Our findings reveal that the catalytic core contains the conserved motifs that are essential for cleavage activity, but there are some instances in which compensatory core variations are present. However, no instances of HHRs have been found in Crenarchaeota. This study reveals a very scarce presence of HHRs in Archaea which suggests the involvement of other ncRNA elements in gene regulatory system like RNase P which are abundantly found in the Archaeal domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The numbers of the nucleotide are assigned on the basis of their actual positions in the HHR secondary structure and not on the basis of their position in catalytic core.

References

  1. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci 74:5088–5090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Burns DG, Janssen PH et al (2007) Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57:387–392

    Article  CAS  PubMed  Google Scholar 

  3. Gribaldo S, Brochier-Armanet C (2006) The origin and evolution of Archaea: a state of the art. Philos Trans R Soc Lond B Biol Sci 361:1007–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252

    Article  CAS  PubMed  Google Scholar 

  5. Winkler WC, Breaker RR (2005) Regulation of bacterial gene expression by riboswitches. Annu Rev Microbiol 59:487–517

    Article  CAS  PubMed  Google Scholar 

  6. Serganov A, Patel DJ (2007) Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat Rev Genet 8:776–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hall TA, Brown JW (2002) Archaeal RNase P has multiple protein subunits homologous to eukaryotic nuclear RNase P proteins. RNA 8:296–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Martínez-Abarca F, Toro N (2000) Group II introns in the bacterial world. Mol Microbiol 38:917–926

    Article  PubMed  Google Scholar 

  9. Prody GA, Bakos JT et al (1986) Autolytic processing of dimeric plant virus satellite RNA. Science 231:1577–1580

    Article  CAS  PubMed  Google Scholar 

  10. Buzayan JM, Gerlach WL et al (1986) Non-enzymatic cleavage and ligation of RNAs complementary to a plant virus satellite RNA. Nature 323:349–353

    Article  CAS  Google Scholar 

  11. Sharmeen L, Kuo M et al (1988) Antigenomic RNA of human hepatitis delta virus can undergo self-cleavage. J Virol 62:2674–2679

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Saville BJ, Collins RA (1990) A site-specific self-cleavage reaction performed by a novel RNA in Neurospora mitochondria. Cell 61:685–696

    Article  CAS  PubMed  Google Scholar 

  13. Winkler WC, Nahvi A et al (2004) Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428:281–286

    Article  CAS  PubMed  Google Scholar 

  14. Roth A, Weinberg Z et al (2014) A widespread self-cleaving ribozyme class is revealed by bioinformatics. Nat Chem Biol 10:56–60

    Article  CAS  PubMed  Google Scholar 

  15. Ferbeyre G, Smith JM et al (1988) Schistosome satellite DNA encodes active hammerhead ribozymes. Mol Cell Biol 18:3880–3888

    Article  Google Scholar 

  16. Przybilski R, Gräf S et al (2005) Functional hammerhead ribozymes naturally encoded in the genome of Arabidopsis thaliana. Plant Cell Online 17:1877–1885

    Article  CAS  Google Scholar 

  17. Fei Q, Zhang H et al (2008) Experimental cancer gene therapy by multiple anti-survivin hammerhead ribozymes. Acta Biochim Biophys Sin 40:466–477

    Article  CAS  PubMed  Google Scholar 

  18. Martick M, Horan LH et al (2008) A discontinuous hammerhead ribozyme embedded in a mammalian messenger RNA. Nature 454:899–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de la Peña M, García-Robles I (2010) Ubiquitous presence of the hammerhead ribozyme motif along the tree of life. RNA 16:1943–1950

    Article  PubMed  PubMed Central  Google Scholar 

  20. Scott WG, Horan LH et al (2013) The Hammerhead Ribozyme: structure, catalysis and gene regulation. Prog Mol Biol Transl Sci 120:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vazquez-Tello A, Castán P et al (2002) Efficient trans-cleavage by the Schistosoma mansoni SMα1 hammerhead ribozyme in the extreme thermophile Thermus thermophilus. Nucleic Acids Res 30:1606–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Carbonell A, Flores R et al (2010) Trans-cleaving hammerhead ribozymes with tertiary stabilizing motifs: in vitro and in vivo activity against a structured viroid RNA. Nucleic Acids Res 39(6):2432–2444

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lilley DM (2005) Structure, folding and mechanisms of ribozymes. Curr Opin Struct Biol 15:313–323

    Article  CAS  PubMed  Google Scholar 

  24. Hammann C, Luptak A et al (2012) The ubiquitous hammerhead ribozyme. RNA 18:871–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Perreault J, Weinberg Z et al (2011) Identification of hammerhead ribozymes in all domains of life reveals novel structural variations. PLoS Comput Biol 7(5):e1002031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pley HW, Flaherty KM et al (1994) Three-dimensional structure of a hammerhead ribozyme. Nature 372:68–74

    Article  CAS  PubMed  Google Scholar 

  27. Scott WG (2010) What can the new hammerhead ribozyme structures teach us about design? RNA technologies and their applications. Springer, Berlin, pp 305–323

    Google Scholar 

  28. Scott WG, Finch JT et al (1995) The crystal structure of an aii-rnahammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell 81:991–1002

    Article  CAS  PubMed  Google Scholar 

  29. Cochrane JC, Strobel SA (2008) Catalytic strategies of self-cleaving ribozymes. Acc Chem Res 41:1027–1035

    Article  CAS  PubMed  Google Scholar 

  30. Pyle AM (1993) Ribozymes: a distinct class of metalloenzymes. Science 261:709–714

    Article  CAS  PubMed  Google Scholar 

  31. Steitz TA, Steitz JA (1993) A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci 90:6498–6502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scott WG, Murray JB et al (1996) Capturing the structure of a catalytic RNA intermediate: the hammerhead ribozyme. Science 274:2065–2069

    Article  CAS  PubMed  Google Scholar 

  33. Murray JB, Seyhan AA et al (1998) The hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone. Chem Biol 5:587–595

    Article  CAS  PubMed  Google Scholar 

  34. Khvorova A, Lescoute A et al (2003) Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nat Struct Mol Biol 10:708–712

    Article  CAS  Google Scholar 

  35. Altschul SF, Gish W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  36. Przybilski R, Hammann C (2007) Idiosyncratic cleavage and ligation activity of individual hammerhead ribozymes and core sequence variants thereof. Biol Chem 388:737–741

    Article  CAS  PubMed  Google Scholar 

  37. Ambrós S, Flores R (1998) In vitro and in vivo self-cleavage of a viroid RNA with a mutation in the hammerhead catalytic pocket. Nucleic Acids Res 26:1877–1883

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nawrocki EP, Eddy SR (2013) Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29:2933–2935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Burge SW, Daub J et al (2012) Rfam 11.0: 10 years of RNA families. Nucleic Acids Res 41(Database issue):D226–D232

    Article  PubMed  PubMed Central  Google Scholar 

  40. Eddy S (1996) RNABOB: a program to search for RNA secondary structure motifs in sequence databases, Manual

  41. Riccitelli NJ, Lupták A (2010) Computational discovery of folded RNA domains in genomes and in vitro selected libraries. Methods 52:133–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jimenez RM, Delwart E et al (2011) Structure-based search reveals hammerhead ribozymes in the human microbiome. J Biol Chem 286:7737–7743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Popenda M, Szachniuk M et al (2012) Automated 3D structure composition for large RNAs. Nucleic Acids Res 40(14):e112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pettersen EF, Goddard TD et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  46. De la Peña M, Flores R (2001) An extra nucleotide in the consensus catalytic core of a viroid hammerhead ribozyme implications for the design of more efficient ribozymes. J Biol Chem 276:34586–34593

    Article  PubMed  Google Scholar 

  47. Vaish NK, Heaton PA et al (1997) Isolation of hammerhead ribozymes with altered core sequences by in vitro selection. Biochemistry 36:6495–6650

    Article  CAS  PubMed  Google Scholar 

  48. Salehi-Ashtiani K, Szostak JW (2001) In vitro evolution suggests multiple origins for the hammerhead ribozyme. Nature 414:82–84

    Article  CAS  PubMed  Google Scholar 

  49. Webb HT, Riccitelli NJ et al (2009) Widespread occurrence of self-cleaving ribozymes. Science 326:953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Woolf TM (1995) To cleave or not to cleave: ribozymes and antisense. Antisense Res Dev 5:227–232

    Article  CAS  PubMed  Google Scholar 

  51. Citti L, Synthetic RG (2005) Hammerhead ribozymes as therapeutic tools to control disease genes. Curr Gene Ther 5(1):11–24

    Article  CAS  PubMed  Google Scholar 

  52. Lai LB, Chan PP et al (2010) Discovery of a minimal form of RNase P in Pyrobaculum. Proc Natl Acad Sci 107:22493–22498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Swati.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Swati, D. Hammerhead Ribozymes in Archaeal Genomes: A Computational Hunt. Interdiscip Sci Comput Life Sci 9, 192–204 (2017). https://doi.org/10.1007/s12539-016-0141-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-016-0141-3

Keywords

Navigation