Skip to main content
Log in

In silico Identification of Ergosterol as a Novel Fungal Metabolite Enhancing RuBisCO Activity in Lycopersicum esculentum

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

RuBisCO (EC 4.1.1.39), a key enzyme found in stroma of chloroplast, is important for fixing atmospheric CO2 in plants. Alterations in the activity of RuBisCO could influence photosynthetic yield. Therefore, to understand the activity of the protein, knowledge about its structure is pertinent. Though the structure of Nicotiana RuBisCO has been modeled, the structure of tomato RuBisCO is still unknown. RuBisCO extracted from chloroplasts of tomato leaves was subjected to MALDI-TOF–TOF followed by Mascot Search. The protein sequence based on gene identification numbers was subjected to in silico model construction, characterization and docking studies. The primary structure analysis revealed that protein was stable, neutral, hydrophilic and has an acidic pI. The result though indicates a 90 % homology with other members of Solanaceae but differs from the structure of Arabidopsis RuBisCO. Different ligands were docked to assess the activity of RuBisCO against these metabolite components. Out of the number of modulators tested, ergosterol had the maximum affinity (E = −248.08) with RuBisCO. Ergosterol is a major cell wall component of fungi and has not been reported to be naturally found in plants. It is a known immune elicitor in plants. The current study throws light on its role in affecting RuBisCO activity in plants, thereby bringing changes in the photosynthetic rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wishnick M, Lane MD, Scrutton MC (1970) The interaction of metal ions with ribulose 1,5-diphosphate carboxylase from spinach. J Biol Chem 245:4939–4947

    CAS  PubMed  Google Scholar 

  2. Dhingra A, Portis AR, Daniell H (2004) Enhanced translation of a chloroplast-expressed RbcS gene restores small subunit levels and photosynthesis in nuclear RbcS antisense plants. P Natl Acad Sci USA 101:6315–6320

    Article  CAS  Google Scholar 

  3. Portis AR Jr (1992) Regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase activity. Annu Rev Plant Biol 43:415–437

    Article  CAS  Google Scholar 

  4. Meenakshi S, Srisudha S (2012) In silico characterization and homology modeling of cyanobacterial RuBisCO (LS) with computational tools and bioinformatic servers. Helix 4:185–191

    Google Scholar 

  5. Sheth BP, Thaker VS (2014) In silico analyses of RuBisCO Enzymes from different classes of Algae. Int J Biol Sci 3:11–17

    Google Scholar 

  6. Parry MAJ, Andralojc PJ, Mitchell RA, Madgwick PJ, Keys AJ (2003) Manipulation of RuBisCO: the amount, activity, function and regulation. J Exp Bot 54:1321–1333

    Article  CAS  PubMed  Google Scholar 

  7. Imai K, Suzuki Y, Mae T, Makino A (2008) Changes in the synthesis of RuBisCO in rice leaves in relation to senescence and N influx. Ann Bot London 101:135–144

    Article  CAS  Google Scholar 

  8. Mitra J, Sahi AN, Paul PK (2014) Phylloplane microfungal metabolite influences activity of RuBisCO. Arch Phytopathol Pfl 47:584–590

    Article  CAS  Google Scholar 

  9. Havliš J, Thomas H, Šebela M, Shevchenko A (2003) Fast-response proteomics by accelerated in-gel digestion of proteins. Anal Chem 75:1300–1306

    Article  PubMed  Google Scholar 

  10. Liu B, Lin Y, Darwanto A, Song X, Xu G, Zhang K (2009) Identification and characterization of propionylation at histone H3 lysine 23 in mammalian cells. J Biol Chem 284:32288–32295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. doi:10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  13. Gasteiger, Hoogland C, Gattiker A, Wilkins, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook. Humanae Press, Clifton, pp 571–607

    Book  Google Scholar 

  14. Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681–684

    CAS  PubMed  Google Scholar 

  15. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK—a program to check the stereochemical quality of protein structures. J App Cryst 26:283–291

    Article  CAS  Google Scholar 

  16. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  PubMed  Google Scholar 

  18. Schrödinger Release (2013) Maestro, version 9.6. Schrödinger, LLC, New York

    Google Scholar 

  19. Singh T, Biswas D, Jayaram B (2011) AADS—an automated active site identification, docking, and scoring protocol for protein targets based on physicochemical descriptors. J Chem Inf Model 51:2515–2527

    Article  CAS  PubMed  Google Scholar 

  20. Kellenberger E, Rodrigo J, Muller P, Rognan D (2004) Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins Struct Funct Bioinform 57:225–242

    Article  CAS  Google Scholar 

  21. Ghoorah AW, Devignes MD, Smaïl-Tabbone M, Ritchie DW (2013) Protein docking using case-based reasoning. Proteins Struct Funct Bioinform 81:2150–2158

    Article  CAS  Google Scholar 

  22. Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786

    Article  CAS  PubMed  Google Scholar 

  23. Wang C, Fan X, Wang G, Niu J, Zhou B (2011) Differential expression of RuBisCO in sporophytes and gametophytes of some marine macroalgae. PLoS ONE 6:e16351. doi:10.1371/journal.pone.0016351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Granado J, Felix G, Boller T (1995) Perception of fungal sterols in plants (subnanomolar concentrations of ergosterol elicit extracellular alkalinization in tomato cells). Plant Physiol 107:485–490

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bethke G, Grundman RE, Sreekanta S, Truman W, Katagiri F, Glazebrook J (2014) Arabidopsis pectin methylesterases contribute to immunity against Pseudomonas syringae. Plant Physiol 164:1093–1107

    Article  CAS  PubMed  Google Scholar 

  26. Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant–pathogen interactions. Curr Opin Plant Biol 8:409–414

    Article  CAS  PubMed  Google Scholar 

  27. Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  28. Parry MAJ, Andralojc PJ, Parmar S et al (1997) Regulation of RuBisCO by inhibitors in the light. Plant Cell Env 20:528–534

    Article  CAS  Google Scholar 

  29. Geng X, Cheng J, Gangadharan A, Mackey D (2012) The coronatine toxin of Pseudomonas syringae is a multifunctional suppressor of Arabidopsis defense. Plant Cell 24:4763–4774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gorran A, Farzaneh M, Shivazad M, Rezaeian M, Ghassempour A (2013) Aflatoxin B1-reduction of Aspergillus flavus by three medicinal plants (Lamiaceae). Food Control 31:218–223

    Article  CAS  Google Scholar 

  31. Ghany A (2014) Eco-friendly and safe role of Juniperus procera in controlling of fungal growth and secondary metabolites. J Plant Pathol Microbiol 5:3. doi:10.4172/2157-7471.1000231

    Article  Google Scholar 

  32. Dong X, Ling N, Wang M, Shen Q, Guo S (2012) Fusaric acid is a crucial factor in the disturbance of leaf water imbalance in Fusarium-infected banana plants. Plant Physiol Biochem 60:171–179

    Article  CAS  PubMed  Google Scholar 

  33. Sharkey TD (1989) Evaluating the role of RuBisCO regulation in Photosynthesis of C3 Plants. Philosophical transactions of the royal society of London. Biol Sci 323:435–448

    Article  CAS  Google Scholar 

  34. Heldt HW, Piechulla B (2010) Plant biochemistry. Academic Press, London

    Google Scholar 

  35. Rutner AC, Lane MD (1967) Nonidentical subunits of ribulose diphosphate carboxylase. Biochem Bioph Res Co 28:531–537

    Article  CAS  Google Scholar 

  36. Meenakshi S, Srisudha S (2013) Computational analysis for small subunit of RuBisCO in cyanobacteria. Indian J Sci Res 4:31–35

    CAS  Google Scholar 

  37. Drossopoulos JB, Karamanos AJ, Niavis A (1985) Changes in amino acid compounds during the development of two wheat cultivars subjected to different degrees of water stress. Ann Bot 56:291–305

    CAS  Google Scholar 

  38. Genkov T, Spreitzer RJ (2009) Highly conserved small subunit residues influence RuBisCO large subunit catalysis. J Biol Chem 284:30105–30112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hooft RW, Sander C, Vriend G (1997) Objectively judging the quality of a protein structure from a Ramachandran plot. Comput Appl Biosci 13:425–430

    CAS  PubMed  Google Scholar 

  40. Fritz CC, Wolter FP, Schenkemeyer V, Herget T, Schreier PH (1993) The gene family encoding the ribulose-(1,5)-bisphosphate carboxylase/oxygenase (RuBisCO) small subunit of potato. Gene 137:271–274

    Article  CAS  PubMed  Google Scholar 

  41. Zhang XH, Webb J, Huang YH, Lin L, Tang RS, Liu A (2011) Hybrid RuBisCO of tomato large subunits and tobacco small subunits is functional in tobacco plants. Plant Sci 180:480–488

    Article  CAS  PubMed  Google Scholar 

  42. Spreitzer RJ, Salvucci ME (2002) RuBisCO: structure, regulatory interactions, and possibilities for a better enzyme. Plant Biology 53:449–475

    Article  CAS  Google Scholar 

  43. Whitney SM, Houtz RL, Alonso H (2011) Advancing our understanding and capacity to engineer nature’s CO2-sequestering enzyme, RuBisCO. Plant Physiol 155:27–35

    Article  CAS  PubMed  Google Scholar 

  44. Pichersky E, Bernatzky R, Tanksley SD, Cashmore AR (1986) Evidence for selection as a mechanism in the concerted evolution of Lycopersicon esculentum (tomato) genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. P Natl Acad Sci USA 83:3880–3884

    Article  CAS  Google Scholar 

  45. Zheng XY, Spivey NW, Zeng W, Liu PP, Fu ZQ, Klessig DF, He SY, Dong X (2012) Coronatine promotes Pseudomonas syringae Virulence in Plants by activating a Signaling Cascade that Inhibits Salicylic Acid Accumulation. Cell Host Microbe 11:587–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moore BD, Seemann JR (1994) Evidence That 2-Carboxyarabinitol 1-Phosphate Binds to Ribulose-l,5-Bisphosphate Carboxylase in Vivo. Plant Physiol 105:731–737

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jensen RG (2000) Activation of RuBisCO regulates photosynthesis at high temperature and CO2. P Natl Acad Sci USA 97:12937–12938

    Article  CAS  Google Scholar 

  48. Kasparovsky T, Blein JP, Mikes V (2004) Ergosterol elicits oxidative burst in tobacco cells via phospholipase A2 and protein kinase C signal pathway. Plant Physiol Bioch 42:429–435

    Article  CAS  Google Scholar 

  49. Kauss H, Jeblick W (1996) Influence of salicylic acid on the induction of competence for H2O2 elicitation (comparison of ergosterol with other elicitors). Plant Physiol 111:755–763

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kloppholz S, Kuhn H, Requena N (2011) A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr Biol 21:1204–1209

    Article  CAS  PubMed  Google Scholar 

  51. Granado J, Felix G, Boller T (1995) Perception of fungal sterols in plants (subnanomolar concentrations of ergosterol elicit extracellular alkalinization in tomato cells). Plant Physiol 107:485–490

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors express their sincere thanks to Amity Institute of Biotechnology, Amity University Uttar Pradesh, NOIDA, India, for providing the necessary infrastructural facilities and DST-INSPIRE, India, for providing Senior Research Fellowship to the first author. The authors also express their gratitude to AIRF, JNU, New Delhi, India, for permitting to perform MALDI-TOF analysis in their department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Paul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitra, J., Narad, P., Sengupta, A. et al. In silico Identification of Ergosterol as a Novel Fungal Metabolite Enhancing RuBisCO Activity in Lycopersicum esculentum . Interdiscip Sci Comput Life Sci 8, 229–240 (2016). https://doi.org/10.1007/s12539-015-0105-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-015-0105-z

Keywords

Navigation