Skip to main content

Advertisement

Log in

An Experimental Analysis of Digital Elevation Models Generated with Lidar Data and UAV Photogrammetry

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

A digital elevation model (DEM) is a very important product that represents the topography digitally. It is an essential requirement of many engineering applications. From past to present, the methodology of DEM generation process is changed with respect to technology. Today, the laser scanner and aerial imagery are two widely used technologies to get DEM. Especially, the computer vision aided the use of unmanned aerial vehicles (UAV) opened new horizons in this regard. This study investigates the airborne LiDAR and UAV based DEM comparisons in terms of correlation and vertical accuracy. For this purpose four different LiDAR data are provided. Moreover, a photogrammetric flight is carried out with UAV and images of the study area are captured after field surveys. Then, five different DEMs are generated from five different point clouds. Finally, the statistical analyses are performed to calculate the correlations and accuracies of DEMS. According to the analysis, the UAV based models are as accurate as LiDAR based models along with some other advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Axelsson, P. (2000). DEM generation from laser scanner data using adaptive TIN models. In Proceedings of International Archives of Photogrammetry and Remote Sensing, 33, 110–117.

    Google Scholar 

  • Bandara, K., Samarakoon, L., Shrestha, R. P., & Kamiya, Y. (2011). Automated generation of digital terrain model using point clouds of digital surface model in forest area. Remote Sensing, 3, 845–858. https://doi.org/10.3390/rs3050845.

    Article  Google Scholar 

  • Boufama, B., Mohr, R., & Veillon, F. (1993). Euclidian constraints for uncalibrated reconstruction. In Proceedings of computer vision conferences (pp. 466–470). https://doi.org/10.1109/iccv.1993.378179.

  • Colomina, I., Blázquez, M., Molina, P., Parés, M. E., & Wis, M. (2008). Towards a new paradigm for high-resolution low-cost photogrammetry and remote sensing. In Proceedings of XXIst ISPRS congress: Technical commission I (pp. 1201).

  • Eisenbeiss, H., Lambers, K., Sauerbier, M., & Li, Z. (2005). Photogrammetric documentation of an archaeological site (Palpa, Peru) using an autonomous model helicopter. In Proceedings of International CIPA Symposium (pp. 238–243).

  • Guo’an, T., Shanshan, G., Fayuan, L., & Jieyu, Z. (2005). Review of digital elevation model (DEM) based research on China Loess Plateau. Journal of Mountain Science, 2(3), 265–270.

    Article  Google Scholar 

  • Harris, C., & Stephens, M. (1988). A combined corner and edge detector. In Procedings of the Alvey vision conference (pp. 147–151).

  • Harwin, S., & Lucieer, A. (2012). Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from unmanned aerial vehicle (UAV) imagery. Remote Sensing, 4, 1573–1599. https://doi.org/10.3390/rs4061573.

    Article  Google Scholar 

  • Hu, Y. (2003). Automated extraction of digital terrain models, roads and buildings using airborne LiDAR data. Dissertation, Department of Geomantic Engineering, University of Calgary.

  • Javernick, L., Brasington, J., & Caruso, B. (2014). Modeling the topography of shallow braided rivers using structure-from-motion photogrammetry. Geomorphology, 213, 166–182. https://doi.org/10.1016/j.geomorph.2014.01.006.

    Article  Google Scholar 

  • Krauß, T., Arefi, H., & Reinartz, P. (2011). Evaluation of selected methods for extracting digital terrain models from satellite born digital surface models in urban areas. In Proceedings of the SMPR2011 (pp 1–7).

  • Krauß, K., & Pfeifer, N. (1998). Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing, 53, 193–203. https://doi.org/10.1016/S0924-2716(98)00009-4.

    Article  Google Scholar 

  • Li, Z., Zhi, Q., & Gold, C. (2005). Digital terrain modeling: Principales and methodolgy. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Lohmann, P., & Koch, A. (1999). Quality assessment of laser-scanner-data. In Proceedings of the ISPRS workshop on sensing and mapping from space, University of Hanover, Germany.

  • Lucieer, A., Jong, S. M. D., & Turner, D. (2014). Mapping landslide displacements using structure from motion (SfM) and image correlation of multitemporal UAV photography. Progress in Physical Geography, 38, 97–116. https://doi.org/10.1177/0309133313515293.

    Article  Google Scholar 

  • Micheletti, N., Chandler, J. H., & Lane, S. N. (2015). Structure from motion (SfM) photogrammetry. Geomorphological Techniques, 2, 1–12.

    Google Scholar 

  • Polat, N., & Uysal, M. (2015). Investigating performance of airborne LiDAR data filtering algorithms for DTM generation. Measurement, 63, 61–68.

    Article  Google Scholar 

  • Polat, N., Uysal, M., & Toprak, A. S. (2015). An investigation of DEM generation process based on LiDAR data filtering, decimation, and interpolation methods for an urban area. Measurement, 75, 50–56.

    Article  Google Scholar 

  • Prosdocimi, M., Calligaro, S., Sofia, G., Fontana, G. D., & Tarolli, P. (2015). Bank erosion in agricultural drainage networks: new challenges from structure-from-motion photogrammetry for post-event analysis. Earth Surface Processes and Landforms, 40, 1891–1906. https://doi.org/10.1002/esp.3767.

    Article  Google Scholar 

  • Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., & Sarazzi, D. (2011). UAV photogrammetry for mapping and 3d modeling–current status and future perspectives. In Proceedings of the international archives of the photogrammetry, remote sensing and spatial information sciences, Volume XXXVIII-1/C22 (pp 25–31).

  • Serifoglu Yilmaz, C., & Gungor, O. (2016). Comparison of the performances of ground filtering algorithms and dtm generation from a UAV-based point cloud. Geocarto International, 32, 1–41. https://doi.org/10.1080/10106049.2016.1265599.

    Google Scholar 

  • Sibson, R. (1981). A brief description of natural neighbour interpolation. In V. Barnet (Ed.), Interpreting multivariate data (pp. 21–36). Chichester: Wiley.

    Google Scholar 

  • Sithole, G., & Vosselman, G. (2004). Experimental comparison of filter algorithms for bare-earth extraction from airborne laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 59, 85–101. https://doi.org/10.1016/j.isprsjprs.2004.05.004.

    Article  Google Scholar 

  • Sona, G., Pinto, L., Pagliari, D., Passoni, D., & Gini, R. (2014). Experimental analysis of different software packages for orientation and digital surface modelling from UAV images. Earth Science Informatics, 7, 97–107. https://doi.org/10.1007/s12145-013-0142-2.

    Article  Google Scholar 

  • Spetsakis, M., & Aloimonos, J. Y. (1991). A multi-frame approach to visual motion perception. International Journal of Computer Vision, 6, 245–255.

    Article  Google Scholar 

  • Szeliski, R., & Kang, S. B. (1994). Recovering 3d shape and motion from image streams using nonlinear least squares. Journal of Visual Communication and Image Representation, 5(1), 10–28.

    Article  Google Scholar 

  • Ullrich, A., Studnicka, N., Hollaus, M., Briese, C., Wagner. W., Doneus, M., & Mucke, W. (2008). Improvements in DTM generation by using full-waveform airborne laser scanning data. In Proceedings of the 7th annual conference and exposition “laser scanning and digital aerial photography. Today and tomorrow”, 2008 Moscow, Russia.

  • Uysal, M., Toprak, A. S., & Polat, N. (2013). Photo realistic 3d modeling with UAV: Gedik Ahmet Pasha mosque in Afyonkarahisar. In Proceedings of the international CIPA symposium, Volume XL-5/W2, Strasbourg, France.

  • Varlik, A., Selvi, H. Z., Kalayci, I., Karauguz, G., & Öğütcü, S. (2016). Investigation of the compatibility of Fasillar and Eflatunpinar Hitite monuments with close-range photogrammetric technique. Mediterranean Archaeology and Archaeometry, 16(1), 249–256.

    Google Scholar 

  • Vosselman, G. (2000).Slope based filtering of laser altimetry data. In Proceedings of the international archives of photogrammetry and remote sensing, (Vol. XXXIII, pp. 935–942).

  • Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300–314. https://doi.org/10.1016/j.geomorph.2012.08.021.

    Article  Google Scholar 

  • Xiong, L. Y., Tang, G. A., Li, F. Y., Yuan, B. Y., & Lu, Z. C. (2014). Modeling the evolution of loess-covered landforms in the Loess Plateau of China using a DEM of underground bedrock surface. Geomorphology, 209, 18–26. https://doi.org/10.1016/j.geomorph.2013.12.009.

    Article  Google Scholar 

  • Xue-jun, L., Hua-Xing, L., Zheng, R., & Zhi-feng, R. (2007). Scale issues in digital terrain analysis and terrain modeling. Geographical Research, 26(3), 433–442.

    Google Scholar 

  • Yilmaz, M., & Uysal, M. (2016). Comparison of data reduction algorithms for LiDAR-derived digital terrain model generalisation. Area, 48(4), 521–532. https://doi.org/10.1111/area.12276.

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by Afyon Kocatepe University, Project Numbered 16.FEN.BIL.18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nizar Polat.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polat, N., Uysal, M. An Experimental Analysis of Digital Elevation Models Generated with Lidar Data and UAV Photogrammetry. J Indian Soc Remote Sens 46, 1135–1142 (2018). https://doi.org/10.1007/s12524-018-0760-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-018-0760-8

Keywords

Navigation