Skip to main content

Advertisement

Log in

Positional accuracy assessment of historical Google Earth imagery in Lagos State, Nigeria

  • Original Paper
  • Published:
Applied Geomatics Aims and scope Submit manuscript

A Correction to this article was published on 14 October 2022

This article has been updated

Abstract

The horizontal accuracy of historical Google Earth (GE) images at four epochs between the years 2000 and 2018, and the vertical accuracy of its elevation data within Lagos State, in Nigeria, are respectively evaluated by comparison with a very high–resolution digital orthomosaic and comparison with 558 ground control points. Two readily available 30-m digital elevation models (DEMs) — the Shuttle Radar Topography Mission (SRTM) v3.0 and the Advanced Land Observing Satellite World 3D (AW3D) DEM v2.1. — were also compared with GE elevations. A novel approach for assessing the space–time variations in the magnitude and direction of errors in GE imagery is presented. For horizontal accuracy, the root mean square errors (RMSEs) are as follows — year 2000 (16.9 m), year 2008 (16.4 m), year 2012 (6.1 m) and year 2018 (6.1 m). The most recent GE imagery (year 2018) had the least horizontal error while year 2000 had the largest horizontal error. The horizontal shift was skewed towards the western and north-western directions, indicative of systematic error. In terms of the vertical accuracy, GE elevation data had the lowest accuracy and highest RMSE of 6.21 m followed by AW3D with an RMSE of 4.39 m and SRTM with an RMSE of 3.68 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available in Figshare at https://dx.doi.org/10.6084/m9.figshare.14562678 for download. The raw data was provided by JAXA, USGS/NASA and the Lagos State Surveyor General’s Office. Direct requests for these materials may be made to the providers as indicated in the Acknowledgements.

Change history

References

  • Allen TR (2008) Digital terrain visualization and virtual globes for teaching geomorphology. J Geogr 106(6):253–266. https://doi.org/10.1080/00221340701863766

    Article  Google Scholar 

  • Altunel AO, Okolie CJ, Kurtipek A (2022) Capturing the level of progress in vertical accuracy achieved by ASTER GDEM since the beginning: Turkish and Nigerian examples. Geocarto International 23. https://doi.org/10.1080/10106049.2022.2063409

  • American Society for Photogrammetry and Remote Sensing (ASPRS) (2014) ASPRS positional accuracy standards for digital geospatial data - edition 1, Version 1.0. Photogramm Eng Remote Sens 81(3):A1–A26. https://doi.org/10.14358/PERS.81.3.A1-A26

    Article  Google Scholar 

  • Arungwa ID, Obarafo EO, Okolie CJ (2018) Validation of global digital elevation models in Lagos State, Nigeria. Niger J Environ Sci Technol 2(1):78–88. https://doi.org/10.36263/nijest.2018.01.0058

    Article  Google Scholar 

  • American Society for Photogrammetry and Remote Sensing (ASPRS) (1990). ASPRS accuracy standards for large-scale maps, URL: http://www.asprs.org/a/society/committees/standards/1990_ jul_1068–1070.pdf (last date accessed: 22 January 2015)

  • Apeh OI, Uzodinma VN, Ebinne ES, Moka EC, Onah EU (2019) Accuracy Assessment of ALOS W3D30, ASTER GDEM and SRTM30 DEM: A Case Study of Nigeria, West Africa. J Geograph Inf Sys 11:111–123

  • ASPRS, American Society for Photogrammetry and Remote Sensing. (1993). ASPRS accuracy standards for large-scale maps. Bethesda (MD): ASPRS, USA.

  • ASPRS. AMERICAN SOCIETY FOR PHOTOGRAMMETRY AND REMOTE SENSING. ASPRS (1990) accuracy standards for large-scale maps. Photogramm Eng Remote Sens 56(7) 1068–1070.

  • Aurambout JP, Pettit C, Lewis H (2008) Virtual Globes: the Next GIS?. In: Pettit C., Cartwright W., Bishop I., Lowell K., Pullar D., Duncan D. (eds) Landscape analysis and visualisation. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69168-6_25.

  • Becek K, Ibrahim K, Barussalam B (2011) On the positional accuracy of the Google Earth imagery. Proceedings of FIG Working Week on Bridging the Gap between Cultures, Marrakech, Morocco, 8 pp.

  • Benker SC, Langford RP, Pavlis TL (2011) Positional accuracy of the Google Earth terrain model derived from stratigraphic unconformities in the Big Bend region, Texas, USA. Geocarto Int 26(4):291–301

    Article  Google Scholar 

  • BudgIT (2018) What we know about Lagos State Finances. Available at https://yourbudgit.com/wp-content/uploads/2018/05/LAGOS-STATE-DATA-BOOK.pdf

  • Buka L, Maruziva R, Nenhowe P (2015) A comparison of Google Earth extracted points with GPS surveyed points. Ethiop J Environ Stud Manag 8(5):484–493. https://doi.org/10.4314/ejesm.v8i5.2

    Article  Google Scholar 

  • Caglar B, Becek K, Mekik C, Ozendi M (2018) On the vertical accuracy of the ALOS world 3D–30m digital elevation model. Remote Sens Lett 9(6):607–615

    Article  Google Scholar 

  • Carrera-Hernandez JJ (2021) Not all DEMs are equal: an evaluation of six globally available 30 m resolution DEMs with geodetic benchmarks and LiDAR in Mexico. Remote Sens Environ 261:112474

    Article  Google Scholar 

  • Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)? – arguments against avoiding RMSE in the literature. Geosci Model Dev 7:1247–1250. https://doi.org/10.5194/gmd-7-1247-2014

    Article  Google Scholar 

  • Chigbu N, Okezie M, Arungwa ID, Ogba C (2019) Comparative analysis of Google Earth derived elevation with in-situ total station method for engineering constructions, 17p. FIG Working Week 2019 Geospatial information for a smarter life and environmental resilience Hanoi, Vietnam, April 22–26, 2019

  • Curtis AJ, Mills JW, Leitner M, (2006) Spatial confidentiality and GIS: re-engineering mortality locations from published maps about Hurricane Katrina. Int J Health Geographics 5. https://doi.org/10.1186/1476-072X-5-44

  • El-Ashmawy KLA (2016) Investigation of the accuracy of Google Earth elevation data. Artif Satellites J Planet Geodesy 51(3). https://doi.org/10.1515/arsa-2016-0008

  • Elvidge CD, Tuttle BT (2008) How virtual globes are revolutionizing earth observation data access and integration, 137 – 140. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B6a. Beijing 2008

  • Farr TG, Kobrick M (2000) Shuttle radar topography mission produces a wealth of data. Eos Trans AGU 81(48):583–585. https://doi.org/10.1029/EO081i048p00583

    Article  Google Scholar 

  • Flanagin AJ, Metzger MJ (2008) The credibility of volunteered geographic information. GeoJournal 72:137–148

    Article  Google Scholar 

  • Florinsky IV, Skrypitsyna TN, Luschikova OS (2018) Comparative accuracy of the AW3D30 DSM, ASTER GDEM, and SRTM1 DEM: a case study on the Zaoksky testing ground. Remote Sens Lett 9(7):706–714. https://doi.org/10.1080/2150704X.2018.1468098

    Article  Google Scholar 

  • Gbopa AO, Ayodele EG, Okolie CJ, Ajayi AO, Iheaturu CJ (2021) unmanned aerial vehicles for three-dimensional mapping and change detection analysis. Geomatics Environ Eng 15(1):41–61. https://doi.org/10.7494/geom.2021.15.1.41

    Article  Google Scholar 

  • Goodchild MF, Guo H, Annoni A, Bian L, De Bie K, Campbell F et al (2012) Nextgeneration digital earth. Proc Natl Acad Sci USA 109(28):11088–11094

    Article  Google Scholar 

  • Gore Al (1998) The Digital Earth: understanding our planet in the 21st Century. Austr Surveyor 43(2):89–91. https://doi.org/10.1080/00050326.1998.10441850

    Article  Google Scholar 

  • Gore A (1999) The Digital Earth: understanding our planet in the 21st Century. Photogramm Eng Remote Sens 65(5):528–530

    Google Scholar 

  • Goudarzi MA, Landry R (2017) Assessing horizontal positional accuracy of Google Earth Imagery in the city of Montreal, Canada. GEODESY AND CARTOGRAPHY Taylor & Francis Group ISSN 2029–6991 / eISSN 2029–7009 2017 Volume 43(2): 56–65 https://doi.org/10.3846/20296991.2017.1330767

  • Grohmann CH (2018) Evaluation of TanDEM-X DEMs on selected Brazilian sites: comparison with SRTM, ASTER GDEM and ALOS AW3D30. Remote Sens Environ 212:121–133. https://doi.org/10.1016/j.rse.2018.04.043

    Article  Google Scholar 

  • Henry A (2009) Using Google Earth for Internet GIS. M.Sc thesis. Institute of Geography, School of GeoSciences, University of Edinburgh

  • Hu Q, Wu W, Xia T, Yu Q, Yang P, Li Z, Song Q (2013) Exploring the use of Google Earth Imagery and object-based methods in land use/cover mapping. Remote Sens 5(11):6026–6042. MDPI AG. https://doi.org/10.3390/rs5116026

  • Hwang JT (2008) An embedded Google Earth/Maps application on Real Estate Database Inquiry And Display. 785 – 790. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008

  • Hӧhle J, Hӧhle M (2009) Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS J Photogramm Remote Sens 64(4):398–406

    Article  Google Scholar 

  • Iheaturu CJ, Ayodele EG, Okolie CJ (2020) An assessment of the accuracy of structure-from-motion (SfM) photogrammetry for 3D terrain mapping. Geomatics Landmanagement Landscape 2020, 65–82. https://doi.org/10.15576/GLL/2020.2.65

  • Jacobson A, Dhanota J, Godfrey J, Jacobson H, Rossman Z, Stanish A, Walker H, Riggi J (2015) A novel approach to mapping land conversion using Google Earth with an application to East Africa. Environ Model Softw 72:1-e9. https://doi.org/10.1016/j.envsoft.2015.06.011

    Article  Google Scholar 

  • JAXA (2017) ALOS Global Digital Surface Model (DSM). ALOS World 3D-30m. (AW3D30) Dataset. Product Format Description, Version 1.1.http://www:eorc:jaxa:jp/ALOS/en/aw3d30/aw3d30v11formate:pdf

  • Lagos Digest of Statistics (2017) Lagos Digest of Statistics 2017. Avaiable at http://lagosstate.gov.ng/Digest_of_Statistics_2017.pdf

  • Lesiv M, See L, Laso Bayas JC, Sturn T, Schepaschenko D, Karner M, Moorthy I, McCallum I, Fritz S (2018) Characterizing the spatial and temporal availability of very high resolution satellite imagery in Google Earth and Microsoft Bing Maps as a source of reference data. Land 7:118. https://doi.org/10.3390/land7040118

    Article  Google Scholar 

  • Liang J, Gong J, Li W (2018) Applications and impacts of Google Earth: a decadal review (2006–2016). ISPRS J Photogramm Remote Sens 146(2018):91–107. https://doi.org/10.1016/j.isprsjprs.2018.08.019

    Article  Google Scholar 

  • Liu Z, Foresman T, van Genderen J, Wang L (2020) Understanding Digital Earth. In: Guo H., Goodchild M.F., Annoni A. (eds) Manual of Digital Earth. Springer, Singapore. https://doi.org/10.1007/978-981-32-9915-3_1

  • Malarvizhi K, VasanthaKumar S, Porchelvan P (2016) Use of high resolution Google Earth Satellite imagery in landuse map preparation for urban related applications. Procedia Technol 24(2016):1835–1842. https://doi.org/10.1016/j.protcy.2016.05.231

    Article  Google Scholar 

  • McRoberts RE (2010) The effects of rectification and Global Positioning System errors on satellite image-based estimates of forest area. Remote Sens Environ 114:1710–1717. https://doi.org/10.1016/j.rse.2010.03.001

    Article  Google Scholar 

  • MES Innovation Sdn Bhd (2018, July 16) How accurate is Google Earth Elevation? Retrieved from Blog (mes100.com/blog/how-accurate-is-google-earth-elevation/), MiTS 2, Technical Documentation. Accessed 8/11/2020.

  • Mukul M, Srivastava V, Mukul M (2015) Analysis of the accuracy of Shuttle Radar Topography Mission (SRTM) height models using International Global Navigation Satellite System Service (IGS) Network. J Earth Syst Sci 124(6):1343–1357

    Article  Google Scholar 

  • Mukul M, Srivastava V, Jade S, Mukul M (2017) Uncertainties in the shuttle radar topography mission (SRTM) Heights: insights from the indian Himalaya and Peninsula. Sci Rep 7:41672

    Article  Google Scholar 

  • Mulu YA, Derib SD (2019) Positional accuracy evaluation of Google Earth in Addis Ababa. Artificial Satellites 54(2):43–56. https://doi.org/10.2478/arsa-2019-0005

    Article  Google Scholar 

  • Nourbakhsh I, Sargent R, Wright A, Cramer K, McClendon B, Jones M (2006) Mapping disaster zones. Nature 439(7078):787–788. https://doi.org/10.1038/439787a

    Article  Google Scholar 

  • Nwilo PC, Onyegbula JC, Okolie CJ, Daramola OE, Abolaji OE, Arungwa ID (2021) Influence of land cover, slope, and aspect on the vertical accuracy of SPOT DEM at selected sites in Nigeria. Appl Geomatics. https://doi.org/10.1007/s12518-021-00404-0

    Article  Google Scholar 

  • Nwilo PC, Ayodele EG, Okolie CJ (2017) Determination of the impacts of landscape offsets on the 30-metre SRTM DEM through a comparative analysis with Bare-Earth Elevations. FIG Peer Review Journal, 21 pps. ISSN No 2412–916X. http://fig.net/resources/publications/prj/showpeerreviewpaper.asp?pubid=8560

  • Nwilo PC, Okolie CJ, Onyegbula JC, Abolaji OE, Orji MJ, Daramola OE, Arungwa ID (2020) Vertical accuracy assessment of 20-metre SPOT DEM using ground control points from Lagos and FCT, Nigeria. J Eng Res 25(2).

  • Okolie CJ, Arungwa I (2022) Accuracy assessment of ALOS World 3D–30m DEMs using field data from Lagos and Federal Capital Territory, Nigeria. Geocarto Int. https://doi.org/10.1080/10106049.2022.2060320

    Article  Google Scholar 

  • Okolie CJ, Smit JL (2022) A systematic review and meta-analysis of digital elevation model (DEM) fusion: pre-processing, methods and applications. ISPRS J Photogramm Remote Sens. https://doi.org/10.1016/j.isprsjprs.2022.03.016

    Article  Google Scholar 

  • Olusina JO, Okolie CJ (2018) Visualization of uncertainty in 30m resolution global digital elevation models: SRTM v3.0 and ASTER v2. Nigerian Journal of Technological Development, Vol. 15(3): 77–83. https://doi.org/10.4314/njtd.v15i3.2http://www.njtd.com.ng/index.php/njtd/article/view/126/108

  • Paredes-Hernández CU, Salinas-Castillo WE, Guevara-Cortina F, Martínez-Becerra X (2013) Horizontal positional accuracy of Google Earth’s imagery over rural areas: a study case in Tamaulipas, Mexico. BCG - Boletim de Ciências Geodésicas - On-Line version, ISSN 1982-2170 https://doi.org/10.1590/S1982-21702013000400005

  • Patel A, Katiyar S, Prasas V (2016) Performance evaluation of different OpenSource DEM using differential Global Positioning System (DGPS). Egypt J Remote Sens Space Sci 19:7–16. https://doi.org/10.1016/j.ejrs.2015.12.004

    Article  Google Scholar 

  • Potere D (2008) Horizontal positional accuracy of Google Earth’s high-resolution imagery archive. Sensors 8:7973–7981

    Article  Google Scholar 

  • Pulighe G, Baiocchi V, Lupia F (2016) Horizontal accuracy assessment of very high resolution Google Earth images in the city of Rome. Italy Int J Digital Earth 9(4):342–362. https://doi.org/10.1080/17538947.2015.1031716

    Article  Google Scholar 

  • Schottenfels P (2020) Ask a Techspert: how do satellite images work? https://blog.google/products/maps/how-do-satellite-images-work/ (Date accessed: 6th May, 2020).

  • Shen C, Fan J, Pi L, Li F (2006) Delineating lakes and enclosed islands in satellite imagery by geodesic active contour model. Int J Remote Sens 27(23):5253–5268. https://doi.org/10.1080/01431160600857444

    Article  Google Scholar 

  • Tadono T, Nagai H, Ishida H, Oda F, Naito S, Minakawa K, Iwamoto H (2016) Generation of the 30 m-mesh global digital surface model by ALOS PRISM. Int Arch Photogramm Remote Sens Spat Inf Sci 41.

  • Ubakawa T (2013a) An evaluation of the horizontal positional accuracy of Google and Bing Satellite Imagery and Three Roads Data Sets based on high resolution satellite imagery. Available at http://www.ciesin.columbia.edu/confluence/download/attachments/19726351/Ubukawa_PositionalAccuracy_march2013a.pdf?version=1&modificationDate=1363795265000

  • Ubukawa T (2013b) An evaluation of the horizontal positional accuracy of Google and Bing Satellite Imagery and Three Roads Data Sets based on high resolution satellite imagery. Center for International Earth Science Information Network (CIESIN), The Earth Institute at Columbia University.

  • Üstün A, Abbak RA, Öztürk ZE (2016) Height biases of SRTM DEM related to EGM96: from a global perspective to regional practice. Survey Rev 1–9.

  • Wang Y, Zou Y, Henrickson K, Wang Y, Tang J, Park B-J (2017) Google Earth elevation data extraction and accuracy assessment for transportation applications. PLoS One 12(4):e0175756. https://doi.org/10.1371/journal.pone.0175756

    Article  Google Scholar 

  • Wessel B, Huber M, Wohlfart C, Marschalk U, Kosmann D, Roth A (2018) Accuracy assessment of the global TanDEM-X digital elevation model with GPS data. ISPRS J Photogramm Remote Sens 139:171–182. https://doi.org/10.1016/j.isprsjprs.2018.02.017

    Article  Google Scholar 

  • Yu L, Gong P (2012) Google Earth as a virtual globe tool for Earth science applications at the global scale: progress and perspectives. Int J Remote Sens 33(12):3966–3986. https://doi.org/10.1080/01431161.2011.636081

    Article  Google Scholar 

  • Zhang K, Gann D, Ross M, Robertson Q, Sarmiento J, Santana S, Rhome J, Fritz C (2019) Accuracy assessment of ASTER, SRTM, ALOS, and TDX DEMs for Hispaniola and implications for mapping vulnerability to coastal flooding. Remote Sens Environ 225(2019):290–306. https://doi.org/10.1016/j.rse.2019.02.028

    Article  Google Scholar 

Download references

Acknowledgements

We thank Google LLC for free access to Google Earth imagery used in this research, the Japan Aerospace Exploration Agency (JAXA) for free access to AW3D-30m DEM and the National Aeronautics and Space Administration (NASA)/US Geological Surveys (USGS) for free access to SRTM data. The University of Lagos management is also appreciated for permitting us to conduct the UAV survey within the campus. We are also grateful to the Lagos State Surveyor General’s Office for provision of ground control points. The DJI Phantom 4 Professional UAV and accessories were made available by Geospatial Research Limited Nigeria. The following individuals who assisted with the GPS observation, UAV survey and orthomosaic processing are acknowledged — Kayode Omolaye and Olumide Awe (Geospatial Research Limited Nigeria), Adefemi Alabi Geosys Nigeria Limited, Shittu Ibrahim (Federal School of Surveying, Nigeria), Tochi Nwaoru, Oluwaseyi Isaac and Adepo Rahmatullahi (Department of Surveying and Geoinformatics, University of Lagos, Nigeria).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikenna D. Arungwa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

The original online version of this article was revised: In this article, the correct details of Altunel et al. 2022 should be “Altunel AO, Okolie CJ, Kurtipek A (2022) Capturing the level of progress in vertical accuracy achieved by ASTER GDEM since the beginning: Turkish and Nigerian examples. Geocarto International, 23 p., https://doi.org/10.1080/10106049.2022.2063409.”

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nwilo, P.C., Okolie, C.J., Onyegbula, J.C. et al. Positional accuracy assessment of historical Google Earth imagery in Lagos State, Nigeria. Appl Geomat 14, 545–568 (2022). https://doi.org/10.1007/s12518-022-00449-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12518-022-00449-9

Keywords

Navigation