Skip to main content

Advertisement

Log in

An investigation of tree extraction from UAV-based photogrammetric dense point cloud

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Manually, tree detection with terrestrial field work is a nonprofit labor in terms of time, cost, and manpower. As a rapid alternative, terrestrial and airborne laser scanners are widely in use for data collecting. But this active remote sensing technology is expensive, especially in local small areas. At this point, unmanned aerial vehicles stand as a new opportunity for data collection platforms for tree detection in both large and local study areas. This study shows the usage of unmanned aerial vehicle as a platform to collect aerial images. The images are used to generate 3D dense point clouds. This point cloud is investigated with the random sample consensus algorithm in order to detect tree. The trees are assumed as or in a cylinder which is geometrically defined with respect to tree’s parameters such as radius. According to the results, the RANSAC algorithm is successful in the detection of trees from unclassified image-based dense point cloud. The 232 individual trees have managed to extract with a rate of 70.1% from 3 different study sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aubry-Kientz M, Dutrieux R, Ferraz A, Saatchi S, Hamraz H, Williams J, Coomes D, Piboule A, Vincent GA (2019) Comparative assessment of the performance of individual tree crowns delineation algorithms from ALS data in tropical forests. Remote Sens 11:1086. https://doi.org/10.3390/rs11091086

    Article  Google Scholar 

  • Bhagavathy S, Manjunath BS (2006) Modeling and detection of geospatial objects using texture motifs. IEEE Trans Geosci Remote Sens 44(12):3706–3715. https://doi.org/10.1109/TGRS.2006.881741

    Article  Google Scholar 

  • Boesch R (2013) Model based automatic segmentation of tree stems from single scan data. In: Proceedings of ISPRS archives, Antalya, Turkey, 11–17 November, pp 49–53

  • Boufama B, Mohr R, Veillon, F (1993) Euclidian constraints for uncalibrated reconstruction. In: Proceedings of 4th international conference on computer vision, Berlin, Germany, May 1993, pp.466–470

  • Brieger F, Herzschuh U, Pestryakova LA, Bookhagen B, Zakharov ES, Kruse S (2019) Advances in the derivation of northeast Siberian forest metrics using high-resolution UAV-based photogrammetric point clouds. Remote Sens 11:1447. https://doi.org/10.3390/rs11121447

    Article  Google Scholar 

  • Charaniya AP, Manduchi R, Lodha SK (2004) Supervised parametric classification of aerial lidar data. In: Proceedings of computer vision and pattern recognition workshop, Washington, DC, USA, June 27 - July 2, pp. 30–30

  • Chen G, Zakhor A (2009) 2d tree detection in large urban landscapes using aerial lidar data. In: 16th IEEE international conference on image processing, Cairo, Egypt, 07 Nov - 10 Nov, pp. 1693–1696

  • De Guevara IL, Muñoz J, de Cózar OD, Blázquez EB (2011) Robust fitting of circle arcs. J Math Imaging Vision 40(2):147–161. https://doi.org/10.1007/s10851-010-0249-8

    Article  Google Scholar 

  • Elseberg J, Borrmann D, Nüchter A (2013) One billion points in the cloud – an octree for efficient processing of 3D laser scans. ISPRS J Photogramm Remote Sens 76(2013): 76–88. https://doi.org/10.1016/j.isprsjprs.2012.10.004

  • Eltner A, Schneider D (2015) Analysis of different methods for 3d reconstruction of natural surfaces from parallel-axes uav images. Photogramm Rec 30(151):279–299. https://doi.org/10.1111/phor.12115

    Article  Google Scholar 

  • Ferreira MP, Almeid ADR, Papa DA, Minervino JBS, Veras HFP, Formighieri A, Santos CAN, Ferreira MAD, Figueiredo EO, Ferreira EJL (2020) Individual tree detection and species classification of Amazonian palms using UAV images and deep learning. For Ecol Manag 475:118397. https://doi.org/10.1016/j.foreco.2020.118397

    Article  Google Scholar 

  • Fischler MA, Bolles RC (1981) Graphics and image processing random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Graphics and Image Processing 24(6):381–395. https://doi.org/10.1145/358669.358692

    Article  Google Scholar 

  • Haala N, Brenner C (1999) Extraction of buildings and trees in urban environments. ISPRS J Photogramm Remote Sens 54(2):130–137. https://doi.org/10.1016/S0924-2716(99)00010-6

    Article  Google Scholar 

  • Harris C, Stephens M (1988) A combined corner and edge detector. In: Procedings of the 4. Alvey Vision Conference, Manchester, England, September, pp 147–151. https://doi.org/10.5244/C.2.23

    Chapter  Google Scholar 

  • Hartly R, Andrew Z (2003) Multiple view geometry in computer vision 2nd ed., Cambridge University Press

  • Heinzel J, Koch B (2012) Investigating multiple data sources for tree species classification in temperate forest and use for single tree delineation. Int J Appl Earth Obs Geoinf 18:101–110. https://doi.org/10.1016/j.jag.2012.01.025

    Article  Google Scholar 

  • Holopainen M, Kankare V, Vastaranta M, Liang X, Lin Y, Vaaja M, Yu X, Hyyppä J, Hyyppä H, Kaartinen H, Kukko A, Tanhuanpää T, Alho P (2013) Tree mapping using airborne, terrestrial and mobile laser scanning – a case study in a heterogeneous urban forest. Urban For Urban Green 12(4):546–553. https://doi.org/10.1016/j.ufug.2013.06.002

    Article  Google Scholar 

  • Lalonde JF, Vandapel N, Hebert M (2006) Automatic three–dimensional point cloud processing for forest inventory. CMU-RI-TR-06-21,The Robot. Institute of CMU, Pennsylvania, USA

  • Lee H, Slatton KC, Roth BE, Cropper JRWP (2010) Adaptive clustering of airborne LiDAR data to segment individual tree crowns in managed pine forests. Int J Remote Sens 31(1):117–139. https://doi.org/10.1080/01431160902882561

    Article  Google Scholar 

  • Li W, Gup Q, Jakubowski MK, Kelly M (2012) A new method for segmenting individual trees from the lidar point cloud. Photogramm Eng Remote Sens 78(1):75–84. https://doi.org/10.14358/PERS.78.1.75

    Article  Google Scholar 

  • Micheletti N, Chandler JH, Lane SN (2015) Structure from motion ( SfM ) photogrammetry. In: Clarke, L.E. and Nield, J.M. (Eds.) Geomorphological Techniques (Online Edition). London: British Society for Geomorphology. ISSN: 2047–0371, Chap. 2. Sec. 2(2):1–12

    Google Scholar 

  • Morsdorf F, Meier E, Kötz B, Itten KI, Dobbertin M, Allgöwer B (2004) LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management. Remote Sens Environ 92(2004):353–362. https://doi.org/10.1016/j.rse.2004.05.013

    Article  Google Scholar 

  • Näsi R, Honkavaara E, Lyytikäinen-Saarenmaa P, Blomqvist M, Litkey P, Hakala T, Viljanen N, Kantola T, Tanhuanpää T, Holopainen M (2015) Using UAV-based photogrammetry and hyperspectral imaging for mapping bark beetle damage at tree-level. Remote Sens 7(11):15467–15493. https://doi.org/10.3390/rs71115467

    Article  Google Scholar 

  • Nevalainen O, Honkavaara E, Tuominen S, Viljanen N, Hakala T, Yu X, Hyyppä J, Saari H, Pölönen I, Imai N, Tommaselli A (2017) Individual tree detection and classification with uav-based photogrammetric point clouds and hyperspectral imaging. Remote Sens 9(3):185. https://doi.org/10.3390/rs9030185

    Article  Google Scholar 

  • Polat N, Uysal M (2015) Investigating performance of airborne LiDAR data filtering algorithms for DTM generation. Measurement, 63(2015):61–68. DOI: https://doi.org/10.1016/j.measurement.2014.12.017

  • Porway J, Wang K, Yao B, Zhu SC (2008) A hierarchical and contextual model for aerial image understanding. In: Procedings of the IEEE conference on computer vision and pattern recognition, Anchorage, AK, USA, 23-28 Jun, pp. 1–8. DOI: https://doi.org/10.1109/CVPR.2008.4587359

  • Reitberger J, Schnörr CL, Krzystek P, Stilla U (2009) 3D segmentation of single trees exploiting full waveform LIDAR data. ISPRS J Photogramm Remote Sens 64(6):561–574. https://doi.org/10.1016/j.isprsjprs.2009.04.002

    Article  Google Scholar 

  • Roth G, Levine MD (1993) Extracting geometric primitives. CVGIP: Image Understanding 58(1):1–22. https://doi.org/10.1006/ciun.1993.1028

    Article  Google Scholar 

  • Schnabel R, Wahl R, Klein R (2006) Shape detection in point clouds. Institut für Informatik II Universität Bonn, ISSN 1610-8892, Bonn, Germany

  • Schnabel R, Wahl R, Klein R (2007) Efficient RANSAC for point-cloud shape detection. Computer Graphics Forum 26(2):214–226. https://doi.org/10.1111/j.1467-8659.2007.01016.x

    Article  Google Scholar 

  • Sima MC, Nüchter A (2013) An extension of the felzenszwalb-huttenlocher segmentation to 3d point clouds. In: Procedings of the fifth international conference on machine vision (ICMV 2012): computer vision, image analysis and processing, Wuhan, China, 20-21 October. DOI: https://doi.org/10.1117/12.2010527

  • Snavely N (2008) Scene reconstruction and visualization from internet photo collections: a survey. IPSJ Transactions on Computer Vision and Applications, 3 (2011):44–66, https://doi.org/10.2197/ipsjtcva.3.44

  • Spetsakis M, Aloimonos JY (1991) A multi-frame approach to visual motion perception. Int J Comput Vis 6(3):245–255

    Article  Google Scholar 

  • Su YT, Bethel J, Hu S (2016) Octree-based segmentation for terrestrial LiDAR point cloud data in industrial applications. ISPRS J Photogram Remote Sens 113(2016):59–74. https://doi.org/10.1016/j.isprsjprs.2016.01.001

    Article  Google Scholar 

  • Suomalainen J, Anders A, Iqbal S, Roerink G, Franke J et al (2014) A lightweight hyperspectral mapping system and photogrammetric processing chain for unmanned aerial vehicles. Remote Sens 6(11):11013–11030. https://doi.org/10.3390/rs61111013

    Article  Google Scholar 

  • Szeliski R, Kang SB (1994) Recovering 3D shape and motion from image streams using nonlinear least squares. J Vis Commun Image Represent 5(1):10–28. https://doi.org/10.1006/jvci.1994.1002

    Article  Google Scholar 

  • Thiel C, Schmullius C (2016) Comparison of UAV photograph-based and airborne lidar-based point clouds over forest from a forestry application perspective. Int J Remote Sens 38(8–10):2411–2426. https://doi.org/10.1080/01431161.2016.1225181

    Article  Google Scholar 

  • Tittmann P, Shafii S, Hartsough B, Hamann B (2011) Tree detection and delineation from LiDAR point clouds using RANSAC. In: Procedings of the 11th International conference on lidar applications for assessing forest ecosystems, Hobart, Australia, 16-19 October,

  • Uray F, Metin A, Varlik A (2015) 3D architectural surveying of diyarbakir wall’s ulu beden tower with terrestrial laser scanner. Procedia Earth Planet Sci 15(2015):73–78. https://doi.org/10.1016/j.proeps.2015.08.019

    Article  Google Scholar 

  • Uysal M, Toprak AS, Polat N (2015) Dem generation with uav photogrammetry and accuracy analysis in sahitler hill. Measurement 73:539–543. https://doi.org/10.1016/j.measurement.2015.06.010

    Article  Google Scholar 

  • Weinstein BG, Marconi S, Bohlman SA, Zare A, White EP (2019) Individual tree-crown detection in RGB imagery using semi-supervised deep learning neural networks. Remote Sens 11:1309. https://doi.org/10.3390/rs11111309

    Article  Google Scholar 

  • Weinstein BG, Marconi S, Bohlman SA, Zare A, White EP (2020) Cross-site learning in deep learning RGB tree crown detection. Ecological Informatics 56:101061. https://doi.org/10.1016/j.ecoinf.2020.101061

    Article  Google Scholar 

  • Wu B, Yu B, Yue W, Shu S, Tan W, Hu C, Huang Y, Wu J, Liu H (2013) A voxel-based method for automated identification and morphological parameters estimation of individual street trees from mobile laser scanning data. Remote Sens 5(2):584–611. https://doi.org/10.3390/rs5020584

    Article  Google Scholar 

  • Zhang C, Zhou Y, Qiu F (2015) Individual tree segmentation from lidar point clouds for urban forest inventory. Remote Sens 7(6):7892–7913. https://doi.org/10.3390/rs70607892

    Article  Google Scholar 

Download references

Funding

This study is supported by Afyon Kocatepe University, project numbered 16.FEN.BIL.18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nizar Polat.

Additional information

Responsible Editor: Biswajeet Pradhan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polat, N., Uysal, M. An investigation of tree extraction from UAV-based photogrammetric dense point cloud. Arab J Geosci 13, 846 (2020). https://doi.org/10.1007/s12517-020-05769-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-05769-x

Keywords

Navigation