Skip to main content
Log in

Recovering the large gaps in Landsat 7 SLC-off imagery using weighted multiple linear regression (WMLR)

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Since 2003, the permanent failure of the scan line corrector (SLC) of the Landsat Enhanced Thematic Mapper Plus (ETM+) sensor has seriously limited the scientific applications and usability of ETM+ data. While a number of methods have been conducted to fill the regular un-scanned locations in ETM+ SLC-off images, only a few researches have been developed to recover the large gap areas in such images. In this study, an innovative gap filling method has been introduced to reconstruct the large gap locations in SLC-off images via multi-temporal auxiliary fill images. A correlation is established between the corresponding pixels in the target SLC-off image and two auxiliary fill images in parallel using the multiple linear regression (MLR) model in two successive steps. In the first step, almost half the gap locations have been recovered using the MLR model, then in the second step a weighted multiple linear regression (WMLR) algorithm is proposed to recover the remaining missing values. The simulated and actual case studies show that the proposed approach may provide a powerful tool for recovering the large gaps in SLC-off images, especially when there is a long time interval between the auxiliary fill images and the target SLC-off image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdul Jabar A, Sulong G, George L, Shafry M, Abduljabar Z (2016) Reconstruction the missing pixels for Landsat ETM+ SLC-off images using multiple linear regression model. ARO-Sci J Koya Univ 4(2):15–24

    Article  Google Scholar 

  • Alexandridis TK, Cherif I, Kalogeropoulos C, Monachou S, Eskridge K, Silleos N (2013) Rapid error assessment for quantitative estimations from Landsat 7 gap-filled images. Remote Sens Lett 4(9):920–928

    Article  Google Scholar 

  • Boloorani AD, Erasmi S, Kappas M (2008) Multi-source remotely sensed data combination: projection transformation gap-fill procedure. Sensors 8(7):4429–4440

    Article  Google Scholar 

  • Bonate PL, Steimer JL (2006) Pharmacokinetic-pharmacodynamic modeling and simulation. Springer, New York, pp 205–265

    Google Scholar 

  • Chen J, Zhu X, Vogelmann JE, Gao F, Jin S (2011) A simple and effective method for filling gaps in Landsat ETM+ SLC-off images. Remote Sens Environ 115(4):1053–1064

    Article  Google Scholar 

  • Chen F, Ye H, Zhao X (2012) Making use of the Landsat 7 SLC-off ETM+ image through different recovering approaches. INTECH Open Access Publisher, Rijeka

    Book  Google Scholar 

  • Cheng Q, Shen H, Zhang L, Yuan Q, Zeng C (2014) Cloud removal for remotely sensed images by similar pixel replacement guided with a spatio-temporal MRF model. ISPRS J Photogramm Remote Sens 92:54–68

    Article  Google Scholar 

  • Childs C (2004) Interpolating surfaces in ArcGIS spatial analyst. ESRI Educational Services Retrived from: http://www.esri.com/news/arcuser/0704/files/interploting.pdf

  • Gao F, Masek J, Schwaller M, Hall F (2006) On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Trans Geosci Remote Sens 44:2207–2218

    Article  Google Scholar 

  • He Q, Shan B, Ma H, Chen Y, Wang X (2011) Research on algorithms for recovering Landsat-7 gap data. In Control, Automation and Systems Engineering (CASE), p 1–4

  • Hossain MS, Bujang JS, Zakaria MH, Hashim M (2015) Assessment of Landsat 7 scan line corrector-off data gap-filling methods for seagrass distribution mapping. Int J Remote Sens 36(4):1188–1215

    Google Scholar 

  • Jabar A, Sadiq A, Sulong G, George LE (2014) Survey on gap filling algorithms in Landsat 7 ETM+ images. J Theor Appl Inf Technol 63(1):136–146

    Google Scholar 

  • Jiang Y, Lan T, Wu L (2009) A comparison study of missing value processing methods in time series data mining.  Computational Intelligence and Software Engineering, p 1–4

  • Li X, Shen H, Zhang L, Li H (2015) Sparse-based reconstruction of missing information in remote sensing images from spectral/temporal complementary information. ISPRS J Photogramm Remote Sens 106:1–15

    Article  Google Scholar 

  • Maxwell SK, Craig ME (2008) Use of landsat ETM+ SLC-off segment-based gap-filled imagery for crop type mapping. Geocarto Int 23(3):169–179

    Article  Google Scholar 

  • Maxwell SK, Schmidt GL, Storey JC (2007) A multi-scale segmentation approach to filling gaps in Landsat ETM+ SLC-off images. Int J Remote Sens 28(23):5339–5356

    Article  Google Scholar 

  • Nathans LL, Oswald FL, Nimon K (2012) Interpreting multiple linear regression: a guidebook of variable importance. Pract Assess Res Eval 17(9):1–19

    Google Scholar 

  • Nikolakopoulos KG, Raptis I (2014) Open quarry monitoring using gap-filled LANDSAT 7 ETM SLC-OFF imagery. SPIE Remote Sens 6:92450A–92457A

  • Prasomphan S (2012) Imputing Landsat7 ETM+ with SLC-off image using the similarity measurement between two clusters. Future Generation Communication Technology (FGCT), p 190–195

  • Pringle MJ, Schmidt M, Muir JS (2009) Geostatistical interpolation of SLC-off Landsat ETM+ images. ISPRS J Photogramm Remote Sens 64(6):654–664

    Article  Google Scholar 

  • Romero-Sanchez ME, Ponce-Hernandez R, Franklin SE, Aguirre-Salado CA (2015) Comparison of data gap-filling methods for Landsat ETM+ SLC-off imagery for monitoring forest degradation in a semi-deciduous tropical forest in Mexico. Int J Remote Sens 36(11):2786–2799

    Article  Google Scholar 

  • Roy DP, Ju J, Kline K, Scaramuzza PL, Kovalskyy V, Hansen M et al (2010) Web-enabled Landsat data (WELD): Landsat ETM+ composited mosaics of the conterminous United States. Remote Sens Environ 114(1):35–49

    Article  Google Scholar 

  • Rulloni V, Bustos O, Flesia AG (2012) Large gap imputation in remote sensed imagery of the environment. Comput Stat Data Anal 56(8):2388–2403

    Article  Google Scholar 

  • Sadiq A, Sulong G, Edwar L (2016) Recovering defective Landsat 7 enhanced thematic mapper plus images via multiple linear regression model. IET Comput Vis 10(8):788–797

    Article  Google Scholar 

  • Scaramuzza P, Micijevic E, Chander G (2004) SLC gap-filled products: phase one methodology. Available online at: http://Landsat.usgs.Gov/data_products/SLC_off_data_products/ documents/SLC_Gap_Fill_Methodology.Pdf

  • Shen H, Liu Y, Ai T, Wang Y, Wu B (2010) Universal reconstruction method for radiometric quality improvement of remote sensing images. Int J Appl Earth Obs Geoinf 12(4):278–286

    Article  Google Scholar 

  • Shen H, Li X, Cheng Q, Zeng C, Yang G, Li H, Zhang L (2015) Missing information reconstruction of remote sensing data: a technical review. IEEE Geosci Remote Sens Mag 3(3):61–85

    Article  Google Scholar 

  • Sulong G, Sadiq A, Edwar L (2015) Single and multi-source methods for reconstruction the gaps in Landsat 7 ETM+ SLC-off images. Res J Appl Sci Eng Technol 11(4):423–428

    Google Scholar 

  • Storey J, Scaramuzza P, Schmidt G, Barsi J (2005) Landat 7 scan line corrector-off gap filled product development.  Proceeding of the 2005 Global Priorities in Land Remote SensingIn. Sioux Falls, South Dakota

  • Tranmer M, Elliot M (2008) Multiple linear regression. The Cathie Marsh Centre for Census and Survey Research (CCSR) 5:30–35

  • USGS (2004) Phase 2 gap-fill algorithm: SLC-off gap-filled products gap-fill algorithm methodology. Available online at http://Landsat.usgs.gov/documents/L7SLCGapFilledMethod.pdf

  • Vavra LM (2010) Cramer’s rule (doctoral dissertation, MS dissertation, Dept. Math., Univ. Warwick, Warwick, England)

  • Wulder MA, White JC, Masek JG, Dwyer J, Roy DP (2011) Continuity of Landsat observations: short term considerations. Remote Sens Environ 115(2):747–751

    Article  Google Scholar 

  • Zeng C, Shen H, Zhang L (2013) Recovering missing pixels for Landsat ETM+ SLC-off imagery using multi-temporal regression analysis and a regularization method. Remote Sens Environ 131:182–194

    Article  Google Scholar 

  • Zhang C, Li W, Travis D (2007) Gaps-fill of SLC-off Landsat ETM+ satellite image using a geostatistical approach. Int J Remote Sens 28(22):5103–5122

    Article  Google Scholar 

  • Zhang C, Li W, Civco D (2014) Application of geographically weighted regression to fill gaps in SLC-off Landsat ETM+ satellite imagery. Int J Remote Sens 35(22):7650–7672

    Article  Google Scholar 

  • Zhu X, Liu D, Chen J (2012) A new geostatistical approach for filling gaps in Landsat ETM+ SLC-off images. Remote Sens Environ 124:49–60

    Article  Google Scholar 

Download references

Acknowledgements

Asmaa Sadiq is grateful to the Ministry of Higher Education and Scientific Research/University of Al Mustansiriyah, Iraq for providing sponsorship to continue her PhD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asmaa Sadiq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadiq, A., Edwar, L. & Sulong, G. Recovering the large gaps in Landsat 7 SLC-off imagery using weighted multiple linear regression (WMLR). Arab J Geosci 10, 403 (2017). https://doi.org/10.1007/s12517-017-3121-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-017-3121-y

Keywords

Navigation