Skip to main content

Advertisement

Log in

A support for the existence of paleolakes and paleorivers buried under Saharan sand by means of “gravitational signal” from EIGEN 6C4

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The goal of this study is to demonstrate that and how the recent gravitational and topographic data support the findings made by geologists and others as for the existence of the paleolakes and paleoriver systems, now buried under the sands of Sahara. It is always important and useful to have such an independent analysis supporting certain results, and this paper is such a case. We make use of the gravity disturbances (or anomalies), the Marussi tensor of the second derivatives of the disturbing geopotential, the gravitational invariants and their certain ratio, the strike angle and the virtual deformations. The geopotential is represented by the global combined (from satellite and terrestrial data) high-resolution gravity field model EIGEN 6C4 (till degree and order 2160 in spherical harmonic expansion). The topography is derived from the ASTER GDEM and ETOPO 1 models (both are used). With all these data, we confirm the existence of huge paleolakes or paleoriver systems under the Saharan sands known or anticipated in an independent way by geologists for the lakes MegaChad, Fazzan and Chotts; for Tamanrasset river valley; and Kufrah Basin, presumptive previous flow of the Nile River. Moreover, we suggest a part of the Grand Egyptian Sand Sea as another “candidate” for a paleolake and hence for a follow-up survey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Amante C, Eakins BW (2009) ETOPO1, 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Techn. Memo. NESDIS NGDC-24. National Geophysical Data Center, NOAA. doi:10.7289/V5C8276M

  • Andrews-Hanna JC, Sami W, Asmar JW et al (2012) Ancient igneous intrusions and early expansion of the moon revealed by GRAIL gravity gradiometry. Science Express. doi:10.1126/science.1231753

    Google Scholar 

  • Armitage SJ, Bristol CS, Drake NA (2015) West African monsoon dynamics inferred from abrupt fluctuations of Lake Mega-Chad. Proc National Acad Sci 112(28):8543–8548

    Article  Google Scholar 

  • Battarbee R, Gasse F, Stickley C (2004) Past climate variability through Europe and Africa . Springer, Dordrecht420 pp

    Book  Google Scholar 

  • Beiki M, Pedersen LB (2010) Eigenvector analysis of gravity gradient tensor to locate geologic bodies. Geophysics 75:137–149. doi:10.1190/1.3484098

    Google Scholar 

  • Braitenberg C, Mariani P, Ebbing J, Sprlak M (2011) The enigmatic Chad lineament revisited with global gravity and gravity-gradient fields. In: Van Hinsbergen et al. (eds) The formation and evolution of Africa: a synopsis of 3.8 Ga of Earth history. Geol Soc Lond Spec Publ, 357: 329–341. doi: 10.1144/SP357.18 0305-8719/11

  • Brdička M, Samek L, Sopko B (2000) Mechanika kontinua (continuum mechanics). Academia Publ. House, Praha (in Czech)

    Google Scholar 

  • Bucha B, Janák J (2013) A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders. Comput Geosci 56:186–196. doi:10.1016/j.cageo.2013.03.012

    Article  Google Scholar 

  • Burke K, Gunnel Y (2008) The African erosion surface: a continental-scale synthesis of geomorphology, tectonics, and environmental change over the past 180 million years. Memoir 201:37–44 Boulder, Colorado

    Google Scholar 

  • Dietz RS, Fudali R, Cassidy W (1969) Richat and Semsiyat domes (Mauritania): not Astroblemes. Geological Society of America 80(7):1367–1372

    Article  Google Scholar 

  • Drake NA, El-Hawat AS, Turner P, Armitage SJ, Salem MJ, White KH, McLaren S (2008) Palaeohydrology of the Fazzan Basin and surrounding regions: the last 7 million years. Palaeogeogr Palaeoclimatol Palaeoecol 263:131–145

    Article  Google Scholar 

  • Dumont HJ (ed) (2009) The Nile. Origin, environments, limnology and human use. Springer, Berlin, pp 52–120

    Google Scholar 

  • Embabi NS (2004) The geomorphology of Egypt. Landform evolution. Vol. I, the Nile Valley and the Western Desert. The Egyptian Geographical Society, Cairo, pp 32–70

    Google Scholar 

  • Foerste Ch, Bruinsma S, Abrykosov O, Lemoine J-M et al (2014) The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse (EIGEN 6C4). 5th GOCE user workshop, Paris 25–28, Nov. 2014

  • Hoelzmann P, Gasse F, Dupont LM et al (2004). In: Battarbee et al. (eds.) Paleoenvironmental changes in the arid and subarid belt (Sahara-Sahel-Arabian peninsula) from 150 kyr to present, pp. 219–256

  • Holmes SA, Pavlis NK, Novák P (2006) A Fortran program for very-high degree harmonic synthesis, version 05/01/2006

  • Hotine M (1969) Mathematical Geodesy, ESSA, US. Dept. Comm., Environ. Sci. Serv. Admin., Monograph 2, Washington D.C.

  • Huang J, Reguzzoni M, Gruber T, eds. (2015) Assessment of GOCE geopotential models, Newton’s Bull. 5. IAG & IGFS. ISSN 1810-8555

  • Issawi B, Al-Miṣrīyah MJ (1999) The Phanerozoic geology of Egypt. A geodynamic approach . The Egyptian Geologic Survey, Cairo462 pp

    Google Scholar 

  • Jesus MF, Fernando RP, Paz MRM et al (2011) Multianalytical characterization of silica-rich megabreccias from the proposed natural area of Richat (Sahara desert, Mauritania). Res J Chem Environ 15(3)

  • Kafri U, Yechieli Y (2010) Groundwater base level changes and adjoining hydrological systems, Sect. 11.6. Springer. ISBN 978-3-642-13943-7

  • Kalvoda J, Klokočník J, Kostelecký J, Bezděk A (2013) Mass distribution of Earth landforms determined by aspects of the geopotential as computed from the global gravity field model EGM 2008. Acta Univ. Carolinae, Geographica, XLVIII, 2, Prague, Czech Rep

  • Klokočník J, Kostelecký J, Pešek I, Novák P, Wagner CA, Sebera J (2010) Candidates for multiple impact craters? Popigai and Chicxulub as seen by the global high resolution gravitational field model EGM08. Solid Earth EGU 1:71–83. doi:10.5194/se-1-71-2010

    Article  Google Scholar 

  • Klokočník J, Kalvoda J, Kostelecký J, Eppelbaum L, Bezděk A (2013) Gravity disturbances, Marussi tensor, invariants and other functions of the geopotential represented by EGM 2008, presented at ESA Living Planet Symp. 9–13 Sept. 2013, Edinburgh, Scotland; publ. in Aug. 2014 in. JESR (J Earth Sci Res) 2: 88–101

  • Klokočník J, Kostelecký J, Pešek I, Bezděk A (2016) On feasibility to detect volcanoes hidden under the ice of Antarctica via their “gravitational signal”. Ann Geophys 59. doi:10.4401/ag-7102

  • Kuper R, Kröepelin S (2006) Climate-controlled Holocene occupation in the Sahara: motor of Africa’s evolution. Science 313:803–807

    Article  Google Scholar 

  • Leblanc M, Favreau G, Maley J et al (2006) Reconstruction of Megalake Chad using Shuttle radar topographic mission data. Palaeogeogr Palaeoclimatol Palaeoecol 239:16–27

    Article  Google Scholar 

  • Lopez T, Antoine R, Kerr Y, Darrozes J, Rabinowicz M, Ramillien G, Cazenave A, Genthon P (2016) Subsurface hydrology of the Lake Chad basin from convection modelling and observations. Surv Geophys 37:471–502. doi:10.1007/s10712-016-9363-5

    Article  Google Scholar 

  • Marty JC, Balmino G, Duron J, Rosenblatt P et al (2009) Martian gravity field model and its time variations from MGS and Odyssey data 2009. Planetary and Space Science 57(3):350–363. doi:10.1016/j.pss.2009.01.004

    Article  Google Scholar 

  • Mataragio J, Kieley J (2009) Application of full tensor gradient invariants in detection of intrusion-hosted sulphide mineralization: implications for deposition mechanisms. Mining Geoscience, EAGE First Break, 27: 95–98

  • Matton G, Jébrak M (2014) The “eye of Africa” (Richat dome, Mauritania): an isolated cretaceous alkaline–hydrothermal complex. J Afr Earth Sci 97(8):109–124

    Article  Google Scholar 

  • Maxwell TA, Bahay Issawi, Vance Haynes Jr. C (2010) Evidence for pleistocene lakes in the Tushka region, south Egypt. Downloaded from geology.gsapubs.org on November 22

  • McHugh W, McCauley JF, Haynes V, Breed CS, Schaber GG (1988) Paleorivers and geoarchaeology in the Southern Egyptian Sahara. Geoarcheology 3(1):1–40

    Article  Google Scholar 

  • Murphy CA, Dickinson JL (2009) Exploring exploration play models with FTG gravity data. 11th SAGA Biennal Techn. Meeting & Exhib., Swaziland, pp 89–91

  • Paillou P, Tooth S, Lopez S (2012) The Kufrah paleodrainage system in Libya: a past connection to the Mediterranean Sea? Compt Rendus Geosci 344(8):406–414. doi:10.1016/j.crte.2012.07.002

    Article  Google Scholar 

  • Pajot G, Diament M, Lequentrec-Lalancette M-F, Tiberi Ch (2004) A Bayesian approach to invert GOCE gravity gradients, Proc. 2nd Interntl. GOCE User Workshop ESA-ESRIN, Frascati, ESA SP-569

  • Patriat M, Ellouz N, Dey Z, Jean-Michel Gaulie J-M, Ben Kilani H (2003) The Hammamet, Gabés and Chotts basins (Tunisia): a review of the subsidence history. Sediment Geol 156:241–262

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008a) An Earth gravitational model to degree 2160: EGM 2008. EGU General Assembly 2008, Vienna

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008b) EGM2008: an overview of its development and evaluation. National Geospatial-Intelligence Agency, USA, conf.: Gravity, Geoid and Earth Observation 2008, Chania, Crete, Greece

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth gravitational model 2008 (EGM2008). J Geophys Res 17:B04406. doi:10.1029/2011JB008916

    Google Scholar 

  • Pedersen BD, Rasmussen TM (1990) The gradient tensor of potential field anomalies: some implications on data collection and data processing of maps. Geophysics 55:1558–1566

    Article  Google Scholar 

  • Saad AH (2006) Understanding gravity gradients—a tutorial, the meter reader. In: Van Nieuwenhuise B, August issue, The Leading Edge, 941–949

  • Said R (1990) The geology of Egypt . A.A. Balkema, Rotterdam720 pp.

    Google Scholar 

  • Said R (1993) The river Nile. Geology, hydrology and utilization. Pergamon, Oxford, 320 pp

  • Salem MJ, Busrewil MT (1980) The geology of Libya. I–III, 1200 pp. Academic, London.

  • Schlütter T (2006) Geological atlas of Africa: 218–220. Springer, Berlin

    Google Scholar 

  • Schuster M, Roquin C, Duringer P, Brunet M, Fontugne M, Mackaye HT, Vignaud P, Ghienne J-F (2005) Holocene Lake Mega-Chad palaeo-shorelines from space. Quat Sci Rev 24(16–17):1821–1827

    Article  Google Scholar 

  • Sebera J, Wagner CA, Bezděk A, Klokočník J (2013) Short guide to direct gravitational field modelling with Hotine’s equations. J Geod 87:223–238. doi:10.1007/s00190-012-0591-2

    Article  Google Scholar 

  • Skonieczny C Paillou P, Bory A, Bayon G, et al (2015) African humid periods triggered the reactivation of a large river system in Western Sahara. Nat Commun 6, Article number: 8751. doi:10.1038/ncomms9751

  • Whiteman AJ (1971) The geology of the Sudan Republic. Clarendon, Oxford, pp 52–64

    Google Scholar 

  • Williams MAJ, Williams FM, Dulle GAT et al (2010) Late Quaternary floods and droughts in the Nile Valley, Sudan: new evidence from optically stimulated luminescence and AMS radiocarbon dating. Quat Sci Rev 29:1116–1137

    Article  Google Scholar 

Download references

Acknowledgements

This work has been prepared in the frame of projects #13-36843S (Grant Agency of the Czech Republic) and RVO #679 858 15 (Czech Academy of Sciences), partly supported by the project LO 1506 (PUNTIS) from Ministry of Education of the Czech Republic. We are obliged to Ing. B. Bucha, PhD (STU Bratislava) for computations of the functions of the disturbing potential (here EIGEN 6C4) and Ing. Karolina Hanzalová for a part of topographic data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Klokočník.

Appendix - artefacts

Appendix - artefacts

We recall sections “Gravitational field models with high resolution”, “Typical gravitational signal of various geological structures, note on artefacts” and “Lake MegaFazzan”. The method of solution for the harmonic geopotential coefficients is in fact a type of Fourier analysis. The input data are inevitably gridded (they are not continuous), and thus, the mathematical process generates “false” harmonic frequencies. As an example, let us take the function “sinus” defined on the interval <0°, 360°> by the individual data points given in an interval 20° (Fig. 16). After the Fourier transform, we receive a frequency spectrum shown in Fig. 17. Due to the gridding, we observe many frequencies and not the expected “theoretical” period of 360°. The most important frequencies, together with their amplitudes, are gathered into Table 2. By this way, we explain at least some of the artefacts discussed in sections “Typical gravitational signal of various geological structures, note on artefacts” and “Gravitational signal and topography for selected zones of Sahara with EIGEN 6C4 and ASTER GDEM”. Besides this, we can observe classical big “long-wave” aliasing effect (Fig. 18), originating when very few observations would be available in the interval <0°, 360°>. The artefacts depend on the density of the input data and on numerical precision of the transform.

Fig. 16
figure 16

The input data to Fourier analysis; data interval is 20°

Fig. 17
figure 17

Output from the Fourier transform; the frequency spectrum with artefacts

Fig. 18
figure 18

The well-known aliasing as a “long-wave” artefact. The long wave would constitute from the dots

Table 2 The approximation of the function “sinus” on the interval <0°, 360°>. The most important frequencies, together with their amplitudes, after the Fourier transform of “sinus” function with the gridded input data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klokočník, J., Kostelecký, J., Cílek, V. et al. A support for the existence of paleolakes and paleorivers buried under Saharan sand by means of “gravitational signal” from EIGEN 6C4. Arab J Geosci 10, 199 (2017). https://doi.org/10.1007/s12517-017-2962-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-017-2962-8

Keywords

Navigation