Skip to main content

Advertisement

Log in

Nanoparticle Imaging of Vascular Inflammation and Remodeling in Atherosclerotic Disease

  • Molecular Imaging (J Wu and P Nguyen, Section Editors)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to highlight some of the recent developments (within the last 5 years) in imaging atherosclerotic plaques using nanoparticles, with a focus on technologies that have been applied to in vivo models of disease.

Recent Findings

Structural and cellular components of atherosclerotic plaques are being imaged with greater definition and improved sensitivity. This is a result of both molecular targeting of nanoparticles to disease-relevant biomarkers through the use of nanoparticles of different shapes and sizes and tailoring pharmacokinetic parameters that allow for enhanced pharmacodynamic effects.

Summary

Currently, there are no atherosclerotic plaque imaging techniques clinically validated to predict future clinical events. Considering the rapid pace of new nanomaterial discovery and development, along with the development of multimodality imaging systems, this goal seems within reach. These advancements are “nano” in name only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. World Health Organization. The top 10 causes of death. http://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Acessed 15 Jan 2019.

  2. Vigne J, Thackeray J, Essers J, Makowski M, Varasteh Z, Curaj A, et al. Current and emerging preclinical approaches for imaging-based characterization of atherosclerosis. Mol Imaging Biol. 2018;20(6):869–87. https://doi.org/10.1007/s11307-018-1264-1.

    Article  PubMed  Google Scholar 

  3. Smith BR, Gambhir SS. Nanomaterials for in vivo imaging. Chem Rev. 2017;117(3):901–86. https://doi.org/10.1021/acs.chemrev.6b00073.

    Article  CAS  PubMed  Google Scholar 

  4. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31. https://doi.org/10.1056/NEJMoa1707914.

    Article  CAS  PubMed  Google Scholar 

  5. Koenig W. Inflammation revisited: atherosclerosis in the post-CANTOS era. Eur Cardiol. 2017;12(2):89–91. https://doi.org/10.15420/ecr.2017:18:1.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Woodside DG, Tanifum EA, Ghaghada KB, Biediger RJ, Caivano AR, Starosolski ZA, et al. Magnetic resonance imaging of atherosclerotic plaque at clinically relevant field strengths (1T) by targeting the integrin alpha4beta1. Sci Rep. 2018;8(1):3733. https://doi.org/10.1038/s41598-018-21893-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bruckman MA, Jiang K, Simpson EJ, Randolph LN, Luyt LG, Yu X, et al. Dual-modal magnetic resonance and fluorescence imaging of atherosclerotic plaques in vivo using VCAM-1 targeted tobacco mosaic virus. Nano Lett. 2014;14(3):1551–8. https://doi.org/10.1021/nl404816m.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen W, Cormode DP, Vengrenyuk Y, Herranz B, Feig JE, Klink A, et al. Collagen-specific peptide conjugated HDL nanoparticles as MRI contrast agent to evaluate compositional changes in atherosclerotic plaque regression. JACC Cardiovasc Imaging. 2013;6(3):373–84. https://doi.org/10.1016/j.jcmg.2012.06.016.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yu M, Ortega CA, Si K, Molinaro R, Schoen FJ, Leitao RFC, et al. Nanoparticles targeting extra domain B of fibronectin-specific to the atherosclerotic lesion types III, IV, and V-enhance plaque detection and cargo delivery. Theranostics. 2018;8(21):6008–24. https://doi.org/10.7150/thno.24365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Peters D, Kastantin M, Kotamraju VR, Karmali PP, Gujraty K, Tirrell M, et al. Targeting atherosclerosis by using modular, multifunctional micelles. Proc Natl Acad Sci U S A. 2009;106(24):9815–9. https://doi.org/10.1073/pnas.0903369106.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tall AR, Yvan-Charvet L. Cholesterol, inflammation and innate immunity. Nat Rev Immunol. 2015;15(2):104–16. https://doi.org/10.1038/nri3793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nakayama M. Macrophage recognition of crystals and nanoparticles. Front Immunol. 2018;9:103. https://doi.org/10.3389/fimmu.2018.00103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hansson GK, Libby P, Tabas I. Inflammation and plaque vulnerability. J Intern Med. 2015;278(5):483–93. https://doi.org/10.1111/joim.12406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cybulsky MI, Gimbrone MA Jr. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science. 1991;251(4995):788–91.

    Article  CAS  Google Scholar 

  15. Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest. 2001;107(10):1255–62. https://doi.org/10.1172/JCI11871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Patel SS, Thiagarajan R, Willerson JT, Yeh ET. Inhibition of alpha4 integrin and ICAM-1 markedly attenuate macrophage homing to atherosclerotic plaques in ApoE-deficient mice. Circulation. 1998;97(1):75–81.

    Article  CAS  Google Scholar 

  17. Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis (*). Annu Rev Immunol. 2009;27:165–97. https://doi.org/10.1146/annurev.immunol.021908.132620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Libby P, Pasterkamp G, Crea F, Jang IK. Reassessing the mechanisms of acute coronary syndromes. Circ Res. 2019;124(1):150–60. https://doi.org/10.1161/CIRCRESAHA.118.311098.

    Article  CAS  PubMed  Google Scholar 

  19. Reimann C, Brangsch J, Colletini F, Walter T, Hamm B, Botnar RM, et al. Molecular imaging of the extracellular matrix in the context of atherosclerosis. Adv Drug Deliv Rev. 2017;113:49–60. https://doi.org/10.1016/j.addr.2016.09.005.

    Article  CAS  PubMed  Google Scholar 

  20. Sinha A, Shaporev A, Nosoudi N, Lei Y, Vertegel A, Lessner S, et al. Nanoparticle targeting to diseased vasculature for imaging and therapy. Nanomedicine. 2014;10(5):1003–12. https://doi.org/10.1016/j.nano.2014.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Perez-Medina C, Binderup T, Lobatto ME, Tang J, Calcagno C, Giesen L, et al. In vivo PET imaging of HDL in multiple atherosclerosis models. JACC Cardiovasc Imaging. 2016;9(8):950–61. https://doi.org/10.1016/j.jcmg.2016.01.020.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Caravan P, Das B, Dumas S, Epstein FH, Helm PA, Jacques V, et al. Collagen-targeted MRI contrast agent for molecular imaging of fibrosis. Angew Chem Int Ed Eng. 2007;46(43):8171–3. https://doi.org/10.1002/anie.200700700.

    Article  CAS  Google Scholar 

  23. Kaspar M, Zardi L, Neri D. Fibronectin as target for tumor therapy. Int J Cancer. 2006;118(6):1331–9. https://doi.org/10.1002/ijc.21677.

    Article  CAS  PubMed  Google Scholar 

  24. Matter CM, Schuler PK, Alessi P, Meier P, Ricci R, Zhang D, et al. Molecular imaging of atherosclerotic plaques using a human antibody against the extra-domain B of fibronectin. Circ Res. 2004;95(12):1225–33. https://doi.org/10.1161/01.RES.0000150373.15149.ff.

    Article  CAS  PubMed  Google Scholar 

  25. Dietrich T, Berndorff D, Heinrich T, Hucko T, Stepina E, Hauff P, et al. Targeted ED-B fibronectin SPECT in vivo imaging in experimental atherosclerosis. Q J Nucl Med Mol Imaging. 2015;59(2):228–37.

    CAS  PubMed  Google Scholar 

  26. Kim H, Lee Y, Kang S, Choi M, Lee S, Kim S, et al. Self-assembled nanoparticles comprising aptide-SN38 conjugates for use in targeted cancer therapy. Nanotechnology. 2016;27(48):48LT01. https://doi.org/10.1088/0957-4484/27/48/48LT01.

    Article  PubMed  Google Scholar 

  27. Starmans LW, van Duijnhoven SM, Rossin R, Aime S, Daemen MJ, Nicolay K, et al. SPECT imaging of fibrin using fibrin-binding peptides. Contrast Media Mol Imaging. 2013;8(3):229–37. https://doi.org/10.1002/cmmi.1521.

    Article  CAS  PubMed  Google Scholar 

  28. Starmans LW, van Duijnhoven SM, Rossin R, Berben M, Aime S, Daemen MJ, et al. Evaluation of 111In-labeled EPep and FibPep as tracers for fibrin SPECT imaging. Mol Pharm. 2013;10(11):4309–21. https://doi.org/10.1021/mp400406x.

    Article  CAS  PubMed  Google Scholar 

  29. Starmans LW, Moonen RP, Aussems-Custers E, Daemen MJ, Strijkers GJ, Nicolay K, et al. Evaluation of iron oxide nanoparticle micelles for magnetic particle imaging (MPI) of thrombosis. PLoS One. 2015;10(3):e0119257. https://doi.org/10.1371/journal.pone.0119257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yoo SP, Pineda F, Barrett JC, Poon C, Tirrell M, Chung EJ. Gadolinium-functionalized peptide amphiphile micelles for multimodal imaging of atherosclerotic lesions. ACS Omega. 2016;1(5):996–1003. https://doi.org/10.1021/acsomega.6b00210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Simberg D, Duza T, Park JH, Essler M, Pilch J, Zhang L, et al. Biomimetic amplification of nanoparticle homing to tumors. Proc Natl Acad Sci U S A. 2007;104(3):932–6. https://doi.org/10.1073/pnas.0610298104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nahrendorf M, Jaffer FA, Kelly KA, Sosnovik DE, Aikawa E, Libby P, et al. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation. 2006;114(14):1504–11. https://doi.org/10.1161/CIRCULATIONAHA.106.646380.

    Article  CAS  PubMed  Google Scholar 

  33. Nahrendorf M, Keliher E, Panizzi P, Zhang H, Hembrador S, Figueiredo JL, et al. 18F-4V for PET-CT imaging of VCAM-1 expression in atherosclerosis. JACC Cardiovasc Imaging. 2009;2(10):1213–22. https://doi.org/10.1016/j.jcmg.2009.04.016.

    Article  PubMed  PubMed Central  Google Scholar 

  34. McAteer MA, Schneider JE, Ali ZA, Warrick N, Bursill CA, von zur Muhlen C, et al. Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual-targeted microparticles of iron oxide. Arterioscler Thromb Vasc Biol. 2008;28(1):77–83. https://doi.org/10.1161/ATVBAHA.107.145466.

    Article  CAS  PubMed  Google Scholar 

  35. Stein-Merlob AF, Hara T, McCarthy JR, Mauskapf A, Hamilton JA, Ntziachristos V, et al. Atheroma susceptible to thrombosis exhibit impaired endothelial permeability in vivo as assessed by nanoparticle-based fluorescence molecular imaging. Circ Cardiovasc Imaging 2017;10(5) doi:https://doi.org/10.1161/CIRCIMAGING.116.005813.

  36. Wang Y, Chen J, Yang B, Qiao H, Gao L, Su T, et al. In vivo MR and fluorescence dual-modality imaging of atherosclerosis characteristics in mice using profilin-1 targeted magnetic nanoparticles. Theranostics. 2016;6(2):272–86. https://doi.org/10.7150/thno.13350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grootaert MOJ, Moulis M, Roth L, Martinet W, Vindis C, Bennett MR, et al. Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc Res. 2018;114(4):622–34. https://doi.org/10.1093/cvr/cvy007.

    Article  CAS  PubMed  Google Scholar 

  38. Winkels H, Ehinger E, Ghosheh Y, Wolf D, Ley K. Atherosclerosis in the single-cell era. Curr Opin Lipidol. 2018;29(5):389–96. https://doi.org/10.1097/MOL.0000000000000537.

    Article  CAS  PubMed  Google Scholar 

  39. Winkels H, Ehinger E, Vassallo M, Buscher K, Dinh HQ, Kobiyama K, et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry. Circ Res. 2018;122(12):1675–88. https://doi.org/10.1161/CIRCRESAHA.117.312513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cochain C, Vafadarnejad E, Arampatzi P, Pelisek J, Winkels H, Ley K, et al. Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ Res. 2018;122(12):1661–74. https://doi.org/10.1161/CIRCRESAHA.117.312509.

    Article  CAS  PubMed  Google Scholar 

  41. Cole JE, Park I, Ahern DJ, Kassiteridi C, Danso Abeam D, Goddard ME, et al. Immune cell census in murine atherosclerosis: cytometry by time of flight illuminates vascular myeloid cell diversity. Cardiovasc Res. 2018;114(10):1360–71. https://doi.org/10.1093/cvr/cvy109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Konopka CJ, Wozniak M, Hedhli J, Ploska A, Schwartz-Duval A, Siekierzycka A, et al. Multimodal imaging of the receptor for advanced glycation end-products with molecularly targeted nanoparticles. Theranostics. 2018;8(18):5012–24. https://doi.org/10.7150/thno.24791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Majmudar MD, Yoo J, Keliher EJ, Truelove JJ, Iwamoto Y, Sena B, et al. Polymeric nanoparticle PET/MR imaging allows macrophage detection in atherosclerotic plaques. Circ Res. 2013;112(5):755–61. https://doi.org/10.1161/CIRCRESAHA.111.300576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Keliher EJ, Ye YX, Wojtkiewicz GR, Aguirre AD, Tricot B, Senders ML, et al. Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease. Nat Commun. 2017;8:14064. https://doi.org/10.1038/ncomms14064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee JM, Choudhury RP. Atherosclerosis regression and high-density lipoproteins. Expert Rev Cardiovasc Ther. 2010;8(9):1325–34. https://doi.org/10.1586/erc.10.108.

    Article  CAS  PubMed  Google Scholar 

  46. Brown WV, Brewer HB, Rader DJ, Schaefer EJ. HDL as a treatment target. J Clin Lipidol. 2010;4(1):5–16. https://doi.org/10.1016/j.jacl.2009.12.005.

    Article  PubMed  Google Scholar 

  47. Karalis I, Jukema JW. HDL mimetics infusion and regression of atherosclerosis: is it still considered a valid therapeutic option? Curr Cardiol Rep. 2018;20(8):66. https://doi.org/10.1007/s11886-018-1004-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mulder WJM, van Leent MMT, Lameijer M, Fisher EA, Fayad ZA, Perez-Medina C. High-density lipoprotein nanobiologics for precision medicine. Acc Chem Res. 2018;51(1):127–37. https://doi.org/10.1021/acs.accounts.7b00339.

    Article  CAS  PubMed  Google Scholar 

  49. Zheng KH, van der Valk FM, Smits LP, Sandberg M, Dasseux JL, Baron R, et al. HDL mimetic CER-001 targets atherosclerotic plaques in patients. Atherosclerosis. 2016;251:381–8. https://doi.org/10.1016/j.atherosclerosis.2016.05.038.

    Article  CAS  PubMed  Google Scholar 

  50. Tang J, Lobatto ME, Hassing L, van der Staay S, van Rijs SM, Calcagno C, et al. Inhibiting macrophage proliferation suppresses atherosclerotic plaque inflammation. Sci Adv. 2015;1(3):e1400223. https://doi.org/10.1126/sciadv.1400223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Seijkens TTP, van Tiel CM, Kusters PJH, Atzler D, Soehnlein O, Zarzycka B, et al. Targeting CD40-induced TRAF6 signaling in macrophages reduces atherosclerosis. J Am Coll Cardiol. 2018;71(5):527–42. https://doi.org/10.1016/j.jacc.2017.11.055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wen S, Liu DF, Cui Y, Harris SS, Chen YC, Li KC, et al. In vivo MRI detection of carotid atherosclerotic lesions and kidney inflammation in ApoE-deficient mice by using LOX-1 targeted iron nanoparticles. Nanomedicine. 2014;10(3):639–49. https://doi.org/10.1016/j.nano.2013.09.009.

    Article  CAS  PubMed  Google Scholar 

  53. Mitra S, Goyal T, Mehta JL. Oxidized LDL, LOX-1 and atherosclerosis. Cardiovasc Drugs Ther. 2011;25(5):419–29. https://doi.org/10.1007/s10557-011-6341-5.

    Article  CAS  PubMed  Google Scholar 

  54. Nie S, Zhang J, Martinez-Zaguilan R, Sennoune S, Hossen MN, Lichtenstein AH, et al. Detection of atherosclerotic lesions and intimal macrophages using CD36-targeted nanovesicles. J Control Release. 2015;220(Pt A):61–70. https://doi.org/10.1016/j.jconrel.2015.10.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tarin C, Carril M, Martin-Ventura JL, Markuerkiaga I, Padro D, Llamas-Granda P, et al. Targeted gold-coated iron oxide nanoparticles for CD163 detection in atherosclerosis by MRI. Sci Rep. 2015;5:17135. https://doi.org/10.1038/srep17135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Beldman TJ, Senders ML, Alaarg A, Perez-Medina C, Tang J, Zhao Y, et al. Hyaluronan nanoparticles selectively target plaque-associated macrophages and improve plaque stability in atherosclerosis. ACS Nano. 2017;11(6):5785–99. https://doi.org/10.1021/acsnano.7b01385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Luehmann HP, Detering L, Fors BP, Pressly ED, Woodard PK, Randolph GJ, et al. PET/CT imaging of chemokine receptors in inflammatory atherosclerosis using targeted nanoparticles. J Nucl Med. 2016;57(7):1124–9. https://doi.org/10.2967/jnumed.115.166751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bagalkot V, Deiuliis JA, Rajagopalan S, Maiseyeu A. "Eat me" imaging and therapy. Adv Drug Deliv Rev. 2016;99(Pt A:2–11. https://doi.org/10.1016/j.addr.2016.01.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Poh S, Putt KS, Low PS. Folate-targeted dendrimers selectively accumulate at sites of inflammation in mouse models of ulcerative colitis and atherosclerosis. Biomacromolecules. 2017;18(10):3082–8. https://doi.org/10.1021/acs.biomac.7b00728.

    Article  CAS  PubMed  Google Scholar 

  60. Moreno-Layseca P, Icha J, Hamidi H, Ivaska J. Integrin trafficking in cells and tissues. Nat Cell Biol. 2019;21:122–32. https://doi.org/10.1038/s41556-018-0223-z.

    Article  CAS  PubMed  Google Scholar 

  61. Chen CL, Siow TY, Chou CH, Lin CH, Lin MH, Chen YC, et al. Targeted superparamagnetic iron oxide nanoparticles for in vivo magnetic resonance imaging of T-cells in rheumatoid arthritis. Mol Imaging Biol. 2017;19(2):233–44. https://doi.org/10.1007/s11307-016-1001-6.

    Article  CAS  PubMed  Google Scholar 

  62. Capolla S, Garrovo C, Zorzet S, Lorenzon A, Rampazzo E, Spretz R, et al. Targeted tumor imaging of anti-CD20-polymeric nanoparticles developed for the diagnosis of B-cell malignancies. Int J Nanomedicine. 2015;10:4099–109. https://doi.org/10.2147/IJN.S78995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Naruko T, Ueda M, Haze K, van der Wal AC, van der Loos CM, Itoh A, et al. Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation. 2002;106(23):2894–900.

    Article  Google Scholar 

  64. Doring Y, Soehnlein O, Weber C. Neutrophil extracellular traps in atherosclerosis and atherothrombosis. Circ Res. 2017;120(4):736–43. https://doi.org/10.1161/CIRCRESAHA.116.309692.

    Article  CAS  PubMed  Google Scholar 

  65. Pertiwi KR, van der Wal AC, Pabittei DR, Mackaaij C, van Leeuwen MB, Li X, et al. Neutrophil extracellular traps participate in all different types of thrombotic and haemorrhagic complications of coronary atherosclerosis. Thromb Haemost. 2018;118(6):1078–87. https://doi.org/10.1055/s-0038-1641749.

    Article  PubMed  Google Scholar 

  66. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5. https://doi.org/10.1126/science.1092385.

    Article  CAS  PubMed  Google Scholar 

  67. Pellico J, Lechuga-Vieco AV, Almarza E, Hidalgo A, Mesa-Nunez C, Fernandez-Barahona I, et al. In vivo imaging of lung inflammation with neutrophil-specific (68)Ga nano-radiotracer. Sci Rep. 2017;7(1):13242. https://doi.org/10.1038/s41598-017-12829-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author would like to thank Peter Vanderslice, PhD, for critical review of the manuscript, and Heather Leibrecht, MS, ELS, of The Texas Heart Institute for editorial assistance in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren G. Woodside.

Ethics declarations

Conflict of Interest

Dr. Woodside has a patent pending, PCT/US18/29991—Targeting Nanoparticles, and he is a co-founder of and investor in 7Hills Pharma, LLC, a startup biotechnology company developing novel immunotherapies for cancer.

Human and Animal Rights and Informed Consent

The article reviews work previously published by the author that involved animals. There are no unpublished animal studies included in this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Molecular Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woodside, D.G. Nanoparticle Imaging of Vascular Inflammation and Remodeling in Atherosclerotic Disease. Curr Cardiovasc Imaging Rep 12, 28 (2019). https://doi.org/10.1007/s12410-019-9501-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-019-9501-9

Keywords

Navigation