Skip to main content
Log in

2D dynamic and earthquake response analysis of base isolation systems using a convex optimization framework

  • Original Article
  • Published:
Annals of Solid and Structural Mechanics

Abstract

A formulation is presented for the 2D dynamic analysis and earthquake response simulation of base isolation systems. The approach is force-based and consists of casting the computation in each time increment as a convex optimization problem. Interaction between the two horizontal components of response is considered in an elegant and simple way through yield functions appearing as constraints of the optimization problem. Numerical examples are carried out to illustrate the approach. These comprise bidirectional shearing of a high damping rubber bearing and earthquake simulations of a real-world base isolation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Markou AA, Oliveto ND, Athanasiou A (2017) Modelling of high damping rubber bearings. In: Sextos A, Manolis G (eds) Dynamic response of infrastructures to environmentally induced loads. Lecture notes in civil engineering, vol 2. Springer, Cham

    Google Scholar 

  2. Calvi PM, Calvi GM (2018) Historical development of friction-based seismic isolation systems. Soil Dyn Earthq Eng 106:14–30

    Article  Google Scholar 

  3. Grant DN, Fenves GL, Whittaker AS (2004) Bidirectional modeling of high-damping rubber bearings. J Earthq Eng 8(S1):161–185

    Google Scholar 

  4. Park YJ, Wen YK, Ang AHS (1986) Random vibration of hysteretic systems under bi-directional ground motions. Earthq Eng Struct Dyn 14:543–557

    Article  Google Scholar 

  5. Kumar M, Whittaker AS, Constantinou MC (2014) An advanced numerical model of elastomeric seismic isolation bearings. Earthq Eng Struct Dyn 43(13):1955–1974

    Article  Google Scholar 

  6. Oliveto ND, Markou AA, Athanasiou A (2019) Modeling of high damping rubber bearings under bidirectional shear loading. Soil Dyn Earthq Eng 118:179–190

    Article  Google Scholar 

  7. Bouc R (1971) Modele mathematique d’hysteresis. Acustica 24:16–25

    MATH  Google Scholar 

  8. Wen Y (1976) Method for random vibration of hysteretic systems. J Eng Mech Div ASCE 102(2):249–263

    Google Scholar 

  9. Hwang J, Wu J, Pan TC, Yang G (2002) A mathematical hysteretic model for elastomeric isolation bearings. Earthq Eng Struct Dyn 31(4):771–789

    Article  Google Scholar 

  10. Vaiana N, Sessa S, Marmo F, Rosati L (2018) A class of uniaxial phenomenological models for simulating hysteretic phenomena in rate-independent mechanical systems and materials. Nonlinear Dyn 93(3):1647–1669

    Article  Google Scholar 

  11. Vaiana N, Sessa S, Marmo F, Rosati L (2019) An accurate and computationally efficient uniaxial phenomenological model for steel and fiber reinforced elastomeric bearings. Compos Struct 211:196–212

    Article  Google Scholar 

  12. Abe M, Yoshida J, Fujino Y (2004) Multiaxial behaviors of laminated rubber bearings and their modeling. I: experimental study. J Struct Eng 130:1119–1132

    Article  Google Scholar 

  13. Yamamoto M, Minewaki S, Yoneda H, Higashino M (2012) Nonlinear behavior of high-damping rubber bearings under horizontal bidirectional loading: full-scale tests and analytical modeling. Earthq Eng Struct Dyn 41:1845–1860

    Article  Google Scholar 

  14. Chopra AK (2012) Dynamics of structures: theory and applications to earthquake engineering. Prentice Hall, New Jersey

    Google Scholar 

  15. Nagarajaiah S, Reinhorn AM, Constantinou MC (1991) Nonlinear dynamic analysis of 3-D base-isolated structures. J Struct Eng ASCE 117(7):2035–2054

    Article  Google Scholar 

  16. Greco F, Luciano R, Serino G, Vaiana N (2018) A mixed explicit-implicit time integration approach for nonlinear analysis of base-isolated structures. Ann Solid Struct Mech 10(1–2):17–29

    Article  Google Scholar 

  17. Boyd SP, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  Google Scholar 

  18. Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, New York

    MATH  Google Scholar 

  19. Kanno Y (2011) Nonsmooth mechanics and convex optimization. CRC Press, Boca Raton

    Book  Google Scholar 

  20. Cohn MZ, Maier G, Grierson DE (1979) Engineering plasticity by mathematical programming. In: Proceedings of the NATO Advanced Study Institute, University of Waterloo, Waterloo, Canada, 2–12 August 1977. Pergamon Press. New York

  21. Maier GA (1970) Matrix structural theory of piecewise linear elastoplasticity with interacting yield planes. Meccanica 5(1):54

    Article  Google Scholar 

  22. Sivaselvan MV, Lavan O, Dargush GF, Kurino H, Hyodo Y, Fukuda R, Sato K, Apostolakis G, Reinhorn AM (2009) Numerical collapse simulation of large-scale structural systems using an optimization-based algorithm. Earthq Eng Struct Dyn 38(5):655–677

    Article  Google Scholar 

  23. Sivaselvan MV (2011) Complementarity framework for non-linear dynamic analysis of skeletal structures with softening hinges. Int J Numer Meth Eng 86:182–223

    Article  MathSciNet  Google Scholar 

  24. Oliveto ND, Sivaselvan MV (2011) Dynamic analysis of tensegrity structures using a complementarity framework. Comput Struct 89:2471–2483

    Article  Google Scholar 

  25. Halphen B, Nguyen Quoc S (1975) Sur les materiaux standard generalises. Journal de Mecanique 14(1):39

    MATH  Google Scholar 

  26. Mielke A (2006) A mathematical framework for generalized standard materials in the rate-independent case. In: Multifield problems in solid and fluid mechanics. Springer, Berlin, pp 399–428

  27. Architectural Institute of Japan (AIJ) (2016) Design recommendations for seismically isolated buildings. Committee for Seismically Isolated Structures, Japan

  28. Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton

    Book  Google Scholar 

  29. Hiriart-Urruty JB, Lemarechal C (1993) Convex analysis and minimization algorithms. Grundlehren der Mathematischen Wissenschaften. Springer, Berlin, pp 305–306

    Book  Google Scholar 

  30. Sivaselvan MV, Reinhorn AM (2006) Lagrangian approach to structural collapse simulation. J Eng Mech (ASCE) 132(8):795–805

    Article  Google Scholar 

  31. MATLAB Release (2011a) The MathWorks, Inc. Natick, MA, United States (2011)

  32. Mehrotra S (1992) On the implementation of a primal-dual interior point method. SIAM J Optim 2:575–601

    Article  MathSciNet  Google Scholar 

  33. Byrd RH, Gilbert JC, Nocedal J (2000) A trust region method based on interior point techniques for nonlinear programming. Math Program 89(1):149–185

    Article  MathSciNet  Google Scholar 

  34. Byrd RH, Hribar ME, Nocedal J (1999) An interior point algorithm for large-scale nonlinear programming. SIAM J Optim 9(4):877–900

    Article  MathSciNet  Google Scholar 

  35. Waltz RA, Morales JL, Nocedal J, Orban D (2006) An interior algorithm for nonlinear optimization that combines line search and trust region steps. Math Program 107(3):391–408

    Article  MathSciNet  Google Scholar 

  36. Oliveto G, Granata M, Buda G, Sciacca P (2004) Preliminary results from full-scale free vibration tests on a four story reinforced concrete building after seismic rehabilitation by base isolation. In: JSSI 10th anniversary symposium on performance of response controlled buildings, Yokohama, Japan

  37. Oliveto ND, Scalia G, Oliveto G (2008) Dynamic identification of structural systems with viscous and friction damping. J Sound Vib 318:911–926

    Article  Google Scholar 

  38. Oliveto ND, Scalia G, Oliveto G (2010) Time domain identification of hybrid base isolation systems using free vibration tests. Earthq Eng Struct Dyn 39:1015–1038

    Google Scholar 

  39. Athanasiou A, De Felice M, Oliveto G, Oliveto PS (2011) Evolutionary algorithms for the identification of structural systems in earthquake engineering. In: Proceedings of International Conference on Evolutionary Computation Theory and Applications (ECTA 11), France

  40. Athanasiou A, De Felice M, Oliveto G, Oliveto PS (2013) Dynamical modeling and parameter identification of seismic isolation systems by evolution strategies. In: Studies in computational intelligence, vol 465. Springer, Berlin, pp 101–18

    Chapter  Google Scholar 

  41. Oliveto G, Athanasiou A, Oliveto ND (2012) Analytical earthquake response of 1D hybrid base isolation systems. Soil Dyn Earthq Eng 43:1–15

    Article  Google Scholar 

  42. Oliveto G, Oliveto ND, Athanasiou A (2014) Constrained optimization for 1-D dynamic and earthquake response analysis of hybrid base-isolation systems. Soil Dyn Earthq Eng 67:44–53

    Article  Google Scholar 

  43. Markou AA, Oliveto G, Mossucca A, Ponzo FC (2014) Laboratory experimental tests on elastomeric bearings from the Solarino project. Task 1.1. report, WP1 Isolamento Sismico: Rapporto tecnico prove sperimentali progetto JETBIS e prove/analisi su isolatori elastomerici. DPC-ReLUIS project, pp 159–192

  44. SAP2000. Computers and Structures, Inc. Walnut Creek, CA, United States

  45. Oliveto G, Athanasiou A, Marino G, Granata M, Markou AA, Oliveto ND (2016) Adeguamento sismico degli edifici di Solarino. Prodotto finale del WP1: Progettazione di strutture sismicamente isolate. DPC-ReLUIS project, pp 15–77

  46. Thompson ACT (1998) High damping rubber seismic isolation bearings—behavior and design implications. CE299 report, University of California, Berkeley

  47. Morgan TA (2000) Characterization and seismic performance of high-damping rubber isolation bearings. CE299 report, University of California, Berkeley

  48. Huang WH (2002) Bi-directional testing, modeling, and system response of seismically isolated bridges. Ph.D. Thesis, University of California, Berkeley

  49. Presidenza del Consiglio Superiore dei Lavori Pubblici—Servizio Tecnico Centrale (1998) Linee Guida per Progettazione, Esecuzione e Collaudo di Strutture Isolate dal Sisma

Download references

Acknowledgements

The authors gratefully acknowledge financial support by ReLUIS (Italian National Network of University Earthquake Engineering Laboratories), ‘Project D.P.C-ReLUIS 2014–2018’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas D. Oliveto.

Ethics declarations

Conflict of interest

All authors have read and approved submission of the manuscript. The manuscript has not been published nor is it being considered for publication by other journals. The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveto, N.D., Athanasiou, A. 2D dynamic and earthquake response analysis of base isolation systems using a convex optimization framework. Ann. Solid Struct. Mech. 11, 11–24 (2019). https://doi.org/10.1007/s12356-019-00053-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12356-019-00053-4

Keywords

Navigation