Skip to main content
Log in

Levoglucosan as the Intermediate Product on the Pre-treated Sugarcane Bagasse Hydrolysis Catalyzed by Brønsted Acid

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Cellulose is the primary substance of sugarcane bagasse and is essential for producing chemicals such as levoglucosan (LG), which can be synthesized through various methods, such as cellulose hydrolysis catalyzed by a Brønsted acid. This recent research was preceded by a preliminary study on glucose hydrolysis into LG with hydrochloric acid (HCl) as the catalyst. Following the preliminary one, the main study was conducted in two stages: alkaline-acid pre-treatment to separate cellulose from other undesired components in bagasse and cellulose hydrolysis in generating LG. The cellulose hydrolysis was catalyzed by HCl at temperatures ranging from 140 to 180 °C with catalyst concentrations ranging from 0.1 to 0.5 M and solid-to-liquid ratios ranging from 1 to 10%. The experimental results showed that LG could be synthesized from glucose and cellulose, and all the variables observed, namely temperature, catalyst concentration, and solid-to-liquid ratio, influenced the formation of LG. The LG formed was very unstable, thus easily be degraded into other compounds. The cellulose hydrolysis to LG occurred through the following route: cellulose-glucose-LG-decomposition compounds. The reaction's controlling step was the cellulose conversion into glucose for its lowest reaction rate constant compared to the others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdilla-Santes, R.M., S. Agarwal, X. Xi, H. Heeres, P.J. Deuss, and H.J. Heeres. 2020. Valorization of humin type byproducts from pyrolytic sugar conversions to biobased chemicals. Journal of Analytical and Applied Pyrolysis 152: 1–10.

    Article  Google Scholar 

  • Bindwal, A.B., and P.D. Vaidya. 2013. Kinetics of aqueous-phase hydrogenation of levoglucosan over Ru/C catalyst. Industrial & Engineering Chemistry Research 52: 17781–17789.

    Article  CAS  Google Scholar 

  • Chandel, A.K., F.A.F. Antunes, V. Anjos, M.J.V. Bell, L.N. Rodrigues, I. Polikarpov, E.R. De Azevedo, O.D. Bernardinelli, C.A. Rosa, F.C. Pagnocca, and S.S. Da Silva. 2014. Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acid-base pretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae. Biotechnology for Biofuels 7: 1–17.

    Article  Google Scholar 

  • Dufour, A., B. Ourtassi, R. Bounaceur, and A. Zoulalian. 2011. Modelling intra-particle phenomena of biomass pyrolysis. Chemical Engineering Research and Design 89: 2136–2146.

    Article  CAS  Google Scholar 

  • Falco, C., N. Baccile, and M.M. Titirici. 2011. Morphological and structural differences between glucose, cellulose, and lignocellulosic biomass derived hydrothermal carbons. Green Chemistry 13: 3273–3281.

    Article  CAS  Google Scholar 

  • Ferraz, C.P., M. Zielinski, M. Pietrowski, S. Heyte, F. Dumeignil, L.M. Rossi, and R. Wojcieszak. 2018. Influence of support basic sites in green oxidation of biobased substrates using Au-promoted catalysts. ACS Sustainabel Chemistry & Engineering 6: 16332–16340.

    Article  CAS  Google Scholar 

  • Girisuta, B., L.P.B.M. Janssen, and H.J. Heeres. 2006. A kinetic study on the conversion of glucose to levulinic acid. Chemical Engineering Research and Design 84: 339–349.

    Article  CAS  Google Scholar 

  • Girisuta, B., L.P.B.M. Janssen, and H.J. Heeres. 2007. Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid. Industrial and Engineering Chemistry Research 46: 1696–1708.

    Article  CAS  Google Scholar 

  • Gozan, M., J.R.H. Panjaitan, D. Tristantini, R. Alamsyah, and Y.J. Yoo. 2018. Evaluation of separate and simultaneous kinetic parameters for levulinic acid and furfural production from pretreated palm oil empty fruit bunches. International Journal of Chemical Engineering 2018: 1–12.

    Article  Google Scholar 

  • Gupta, P.K., S.S. Raghunath, D.V. Prasanna, and V. Shree. 2019. An update on overview of cellulose, its structure, and applications. In Cellulose, 1–21. IntechOpen.

  • Hayes, M.H.B., R. Mylotte, and R.S. Swift. 2017. Humin: its composition and importance in soil organic matter. In Advances in Agronomy, 47–138. Elsevier Inc.

  • Herbst, A., and C. Janiak. 2016. Selective glucose conversion to 5-hydroxymethylfurfural (5-HMF) instead of levulinic acid with MIL-101Cr MOF-derivatives. New Journal of Chemistry 40: 7958–7967.

    Article  CAS  Google Scholar 

  • Jeong, G., and S. Kim. 2021. Thermochemical conversion of defatted microalgae Scenedesmus obliqus into levulinic and formic acids. Fuel 283: 1–7.

    Article  Google Scholar 

  • Junior, I.I., M.A. do Nascimento, R.O.M.A. de Souza, A. Dufour, and R. Wojcieszak. 2020. Levoglucosan: a promising platform molecule. Green Chemistry 22: 5859–5880.

    Article  Google Scholar 

  • Kabyemela, B.M., T. Adschiri, R.M. Malaluan, and K. Arai. 1997. Kinetics of glucose epimerization and decomposition in subcritical. Industrial & Engineering Chemistry Research 36: 1552–1558.

    Article  CAS  Google Scholar 

  • Kang, S., and J. Yu. 2016. An intensified reaction technology for high levulinic acid concentration from lignocellulosic biomass. Biomass and Bioenergy 95: 214–220.

    Article  CAS  Google Scholar 

  • Kang, S., and J. Yu. 2018. Maintenance of a highly active solid acid catalyst in sugar beet molasses for levulinic acid production. Sugar Tech 20: 182–193.

    Article  CAS  Google Scholar 

  • Kang, S., J. Fu, N. Zhou, R. Liu, Z. Peng, and Y. Xu. 2018. Concentrated levulinic acid production from sugar cane molasses. Energy & Fuels 32: 3526–3531.

    Article  CAS  Google Scholar 

  • Kohli, K., R. Prajapati, and B.K. Sharma. 2019. Bio-based chemicals from renewable biomass for integrated biorefineries. Energies 12: 1–40.

    Article  Google Scholar 

  • Liu, D., K.H. Kim, J. Sun, B.A. Simmons, and S. Singh. 2018. Production of lactic acid from universal types of sugars catalyzed by lanthanum triflate. Chemsuschem 11: 598–604.

    Article  CAS  Google Scholar 

  • Montoya, J., B. Pecha, F.C. Janna, and M. Garcia-Perez. 2017. Single particle model for biomass pyrolysis with bubble formation dynamics inside the liquid intermediate and its contribution to aerosol formation by thermal ejection. Journal of Analytical and Applied Pyrolysis 124: 204–218.

    Article  CAS  Google Scholar 

  • Nugraha, A.S., and T.S. Utami. 2018. The effect of pyrolysis conditions to produce levoglucosan from rice straw. E3S Web of Conferences 67: 1–5.

    Article  Google Scholar 

  • Ohara, M., A. Takagaki, S. Nishimura, and K. Ebitani. 2010. General syntheses of 5-hydroxymethylfurfural and levoglucosan by selective dehydration of glucose using solid acid and base catalysts. Applied Catalysis a: General 383: 149–155.

    Article  CAS  Google Scholar 

  • Oyola-rivera, O., J.A. Dumesic, and N. Cardona-martínez. 2019. Catalytic dehydration of levoglucosan to levoglucosenone using Brønsted solid acid catalysts in tetrahydrofuran. Green Chemistry 21: 4988–4999.

    Article  CAS  Google Scholar 

  • Ozsen, Y. 2020. Conversion of biomass to organic acids by liquefaction reactions under subcritical conditions. Frontiers in Chemistry 8: 1–14.

    Google Scholar 

  • Pecha, M.B., J.I. Montoya Arbelaez, M. Garcia-Perez, F. Chejne Janna, and P.N. Ciesielski. 2019. Progress in understanding the four dominant intraparticle phenomena of lignocellulose pyrolysis: Chemical reactions, heat transfer, mass transfer and phase change. Green Chemistry 21: 2868–2898.

    Article  CAS  Google Scholar 

  • Peng, L., L. Lin, J. Zhang, J. Zhuang, B. Zhang, and Y. Gong. 2010. Catalytic conversion of cellulose to levulinic acid by metal chlorides. Molecules 15: 5258–5272.

    Article  CAS  Google Scholar 

  • Pyo, S., S.J. Glaser, N. Rehnberg, and R. Hatti-Kaul. 2020. Clean production of levulinic acid from fructose and glucose in salt water by heterogeneous catalytic dehydration. ACS Omega 5: 14275–14282.

    Article  CAS  Google Scholar 

  • Qing, Q., Q. Guo, P. Wang, H. Qian, X. Gao, and Y. Zhang. 2018. Kinetics study of levulinic acid production from corncobs by tin tetrachloride as catalyst. Bioresource Technology 260: 150–156.

    Article  CAS  Google Scholar 

  • Rover, M.R., A. Aui, M.M. Wright, R.G. Smith, and R.C. Brown. 2019. Production and purification of crystallized levoglucosan from pyrolysis of lignocellulosic biomass. Green Chemistry 21: 5980–5989.

    Article  CAS  Google Scholar 

  • Ryu, J., Y.W. Suh, D.J. Suh, and D.J. Ahn. 2010. Hydrothermal preparation of carbon microspheres from monosaccharides and phenolic compounds. Carbon 48: 1990–1998.

    Article  CAS  Google Scholar 

  • Satoh, H., K. Takahashi, and H. Kaga. 2004. Production of levoglucosan from glucose in high temperature water. Asian Pacific Confederation of Chemical Engineering 242: 1–7.

    Google Scholar 

  • Schmidt, L.M., L.D. Mthembu, P. Reddy, N. Deenadayalu, M. Kaltschmitt, and I. Smirnova. 2017. Levulinic acid production integrated into a sugarcane bagasse based biorefinery using thermal-enzymatic pretreatment. Industrial Crops and Products 99: 172–178.

    Article  CAS  Google Scholar 

  • Sevilla, M., and A.B. Fuertes. 2009. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47: 2281–2289.

    Article  CAS  Google Scholar 

  • Shen, J., and C.E. Wyman. 2011. Hydrochloric acid-catalyzed levulinic acid formation from cellulose: Data and kinetic model to maximize yields. American Institute of Chemical Engineers Journal 58: 236–246.

    Article  Google Scholar 

  • Sulaiman, A.A., Y. Sulaeman, N. Mustikasari, D. Nursyamsi, and A.M. Syakir. 2019. Increasing sugar production in Indonesia through land suitability analysis and sugar mill restructuring. Land 8: 1–17.

    Article  Google Scholar 

  • Szabolcs, A., M. Molnar, G. Dibo, and L.T. Mika. 2013. Microwave-assisted conversion of carbohydrates to levulinic acid: An essential step in biomass conversion. Green Chemistry 15: 439–445.

    Article  CAS  Google Scholar 

  • Takahashi, K., H. Satoh, T. Satoh, T. Kakuchi, M. Miura, A. Sasaki, M. Sasaki, and H. Kaga. 2009. Formation kinetics of levoglucosan from glucose in high temperature water. Chemical Engineering Journal 153: 170–174.

    Article  CAS  Google Scholar 

  • Tan, J., Y. Li, X. Tan, H. Wu, H. Li, and S. Yang. 2021. Advances in pretreatment of straw biomass for sugar production. Frontiers in Chemistry 9: 1–28.

    Article  Google Scholar 

  • Toif, M.E., M. Hidayat, Rochmadi, and A. Budiman. 2020. Glucose to levulinic acid, a versatile building block chemical. AIP Conference Proceedings 2296: 1–6.

    Google Scholar 

  • Toif, M.E., M. Hidayat, R. Rochmadi, and A. Budiman. 2021. Reaction kinetics of levulinic acid synthesis from glucose using Bronsted acid catalyst. Bulletin of Chemical Reaction Engineering & Catalysis 16: 904–915.

    Article  CAS  Google Scholar 

  • Toif, M.E., M. Hidayat, Rochmadi, and A. Budiman. 2022. Heterogeneous reaction model for evaluating the kinetics of levulinic acid synthesis from pretreated sugarcane bagasse. Accepted to be published in International Journal of Technology.

  • Tuercke, T., S. Panic, and S. Loebbecke. 2009. Microreactor process for the optimized synthesis of 5-hydroxymethylfurfural: A promising building block obtained by catalytic dehydration of fructose. Chemical Engineering Technology 32: 1815–1822.

    Article  CAS  Google Scholar 

  • van Zandvoort, I., Y. Wang, C.B. Rasendra, E.R.H. van Eck, P.C.A. Bruijnincx, H.J. Heeres, and B.M. Weckhuysen. 2013. Formation, molecular structure, and morphology of humins in biomass conversion: Influence of feedstock and processing conditions. Chemsuschem 6: 1745–1758.

    Article  Google Scholar 

  • Wang, S., H. Lin, Y. Zhao, J. Chen, and J. Zhou. 2016. Structural characterization and pyrolysis behavior of humin byproducts from the acid-catalyzed conversion of C6 and C5 carbohydrates. Journal of Analytical and Applied Pyrolysis 118: 259–266.

    Article  CAS  Google Scholar 

  • Weingarten, R., A. Rodriguez-beuerman, F. Cao, J.S. Luterbacher, M. Alonso, J.A. Dumesic, and G.W. Huber. 2014. Selective conversion of cellulose to hydroxymethylfurfural in polar aprotic solvents. ChemCatChem 6: 2229–2234.

    Article  CAS  Google Scholar 

  • Xu, Z., Y. Yang, P. Yan, Z. Xia, X. Liu, and Z.C. Zhang. 2020. Mechanistic understanding of humin formation in the conversion of glucose and fructose to 5-hydroxymethylfurfural in [BMIM]Cl ionic liquid. RSC Advances 10: 34732–34737.

    Article  CAS  Google Scholar 

  • Yin, W., Z. Tang, R.H. Venderbosch, Z. Zhang, C. Cannilla, G. Bonura, F. Frusteri, and H.J. Heeres. 2016. A one step synthesis of C6 sugar alcohols from levoglucosan and dissacharides using a Ru/CMK-3 catalyst. ACS Catalysis 6: 4411–4422.

    Article  CAS  Google Scholar 

  • Yuan, Z., J. Long, Y. Xia, X. Zhang, and Wang. 2016. Production of levulinic acid from Pennisetum alopecuroides in the presence of an acid catalyst. BioResources 11: 3511–3523.

    Article  CAS  Google Scholar 

  • Zheng, X., Z. Zhi, X. Gu, X. Li, R. Zhang, and X. Lu. 2017. Kinetic study of levulinic acid production from corn stalk at mild temperature using FeCl3 as catalyst. Fuel 187: 261–267.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to PMDSU (Master to Doctorate Education for Superior Scholar, Ministry of Education and Culture, Republic of Indonesia) for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

Meutia Ermina Toif conducted experiments, analyzed data, and wrote the original manuscript. Muslikhin Hidayat performed modeling. Rochmadi arranged the details of the experiment. Arief Budiman developed the research concept and lead the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Arief Budiman.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toif, M.E., Hidayat, M., Rochmadi, R. et al. Levoglucosan as the Intermediate Product on the Pre-treated Sugarcane Bagasse Hydrolysis Catalyzed by Brønsted Acid. Sugar Tech 25, 234–244 (2023). https://doi.org/10.1007/s12355-022-01163-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-022-01163-x

Keywords

Navigation