Skip to main content
Log in

Simultaneous determination of dynamic cardiac metabolism and function using PET/MRI

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Cardiac metabolic changes in heart disease precede overt contractile dysfunction. However, metabolism and function are not typically assessed together in clinical practice. The purpose of this study was to develop a cardiac positron emission tomography/magnetic resonance (PET/MR) stress test to assess the dynamic relationship between contractile function and metabolism in a preclinical model.

Methods

Following an overnight fast, healthy pigs (45-50 kg) were anesthetized and mechanically ventilated. 18F-fluorodeoxyglucose (18F-FDG) solution was administered intravenously at a constant rate of 0.01 mL/s for 60 minutes. A cardiac PET/MR stress test was performed using normoxic gas (FIO2 = .209) and hypoxic gas (FIO2 = .12). Simultaneous cardiac imaging was performed on an integrated 3T PET/MR scanner.

Results

Hypoxic stress induced a significant increase in heart rate, cardiac output, left ventricular (LV) ejection fraction (EF), and peak torsion. There was a significant decline in arterial SpO2, LV end-diastolic and end-systolic volumes in hypoxia. Increased LV systolic function was coupled with an increase in myocardial FDG uptake (Ki) during hypoxic stress.

Conclusion

PET/MR with continuous FDG infusion captures dynamic changes in both cardiac metabolism and contractile function. This technique warrants evaluation in human cardiac disease for assessment of subtle functional and metabolic abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

LV:

Left ventricle

RV:

Right ventricle

EF:

Ejection fraction

EDV:

End-diastolic volume

ESV:

End-systolic volume

18F-FDG:

18F-fluorodeoxyglucose

TAC:

Time-activity curve

References

  1. Bache RJ, Zhang J, Murakami Y, Zhang Y, Cho YK, Merkle H, et al. Myocardial oxygenation at high workstates in hearts with left ventricular hypertrophy. Cardiovasc Res. 1999;42:616-26.

    CAS  PubMed  Google Scholar 

  2. Chess DJ, Lei B, Hoit BD, Azimzadeh AM, Stanley WC. Effects of a high saturated fat diet on cardiac hypertrophy and dysfunction in response to pressure overload. J Cardiac Fail. 2008;14:82-8.

    CAS  Google Scholar 

  3. de las Fuentes L, Soto PF, Cupps BP, Pasque MK, Herrero P, Gropler RJ, et al. Hypertensive left ventricular hypertrophy is associated with abnormal myocardial fatty acid metabolism and myocardial efficiency. J Nucl Cardiol. 2006;13:369-77.

    PubMed  Google Scholar 

  4. Doenst T, Pytel G, Schrepper A, Amorim P, Färber G, Shingu Y, et al. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovasc Res. 2010;86:461-70.

    CAS  PubMed  Google Scholar 

  5. Fu Y, Xiao H, Ma X, Jiang S, Xu M, Zhang Y. Metformin attenuates pressure overload-induced cardiac hypertrophy via AMPK activation. Acta Pharmacol Sin. 2011;32:879-87.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kundu BK, Zhong M, Sen S, Davogustto G, Keller SR, Taegtmeyer H. Remodeling of glucose metabolism precedes pressure overload-induced left ventricular hypertrophy: Review of a hypothesis. Cardiology. 2015;130:211-20.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sen S, Kundu BK, Wu HC-J, Hashmi SS, Guthrie P, Locke LW, et al. Glucose regulation of load-induced mTOR signaling and ER stress in mammalian heart. J Am Heart Assoc. 2013;2:e004796.

    PubMed  PubMed Central  Google Scholar 

  8. Zhabyeyev P, Gandhi M, Mori J, Basu R, Kassiri Z, Clanachan A, et al. Pressure-overload-induced heart failure induces a selective reduction in glucose oxidation at physiological afterload. Cardiovasc Res. 2013;97:676-85.

    CAS  PubMed  Google Scholar 

  9. Zhong M, Alonso CE, Taegtmeyer H, Kundu BK. Quantitative PET imaging detects early metabolic remodeling in a mouse model of pressure-overload left ventricular hypertrophy in vivo. J Nucl Med. 2013;54:609-15.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang T, Wang L, Xiong C-M, He J-G, Zhang Y, Gu Q, et al. The ratio of (18)F-FDG activity uptake between the right and left ventricle in patients with pulmonary hypertension correlates with the right ventricular function. Clin Nucl Med. 2014;39:426-30.

    PubMed  Google Scholar 

  11. Taylor M, Wallhaus TR, Degrado TR, Russell DC, Stanko P, Nickles RJ, et al. An evaluation of myocardial fatty acid and glucose uptake using PET with [18F]fluoro-6-thia-heptadecanoic acid and [18F]FDG in patients with congestive heart failure. J Nucl Med. 2001;42:55-62.

    CAS  PubMed  Google Scholar 

  12. Villien M, Wey H-Y, Mandeville JB, Catana C, Polimeni JR, Sander CY, et al. Dynamic functional imaging of brain glucose utilization using fPET-FDG. NeuroImage. 2014;100:192-9.

    PubMed  PubMed Central  Google Scholar 

  13. Brooks RA, Di Chiro G, Zukerberg BW, Bairamian D, Larson SM. Test-retest studies of cerebral glucose metabolism using fluorine-18 deoxyglucose: validation of method. J Nucl Med. 1987;28:53-9.

    CAS  PubMed  Google Scholar 

  14. Schmidt ME, Ernst M, Matochik JA, Maisog JM, Pan BS, Zametkin AJ, et al. Cerebral glucose metabolism during pharmacologic studies: test-retest under placebo conditions. J Nucl Med. 1996;37:1142-9.

    CAS  PubMed  Google Scholar 

  15. Hahn A, Gryglewski G, Nics L, Hienert M, Rischka L, Vraka C, et al. Quantification of task-specific glucose metabolism with constant infusion of 18F-FDG. J Nucl Med. 2016;57:1933-40.

    CAS  PubMed  Google Scholar 

  16. Boos CJ, Mellor A, O’Hara JP, Tsakirides C, Woods DR. The effects of sex on cardiopulmonary responses to acute normobaric hypoxia. High Alt Med Biol. 2016;17:108-15.

    CAS  PubMed  Google Scholar 

  17. Fleg JL, O’Connor F, Gerstenblith G, Becker LC, Clulow J, Schulman SP, et al. Impact of age on the cardiovascular response to dynamic upright exercise in healthy men and women. J appl physiol. 1995;78:890-900.

    CAS  PubMed  Google Scholar 

  18. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3:1-7.

    CAS  PubMed  Google Scholar 

  19. Bøtker HE, Böttcher M, Schmitz O, Gee A, Hansen SB, Cold GE, et al. Glucose uptake and lumped constant variability in normal human hearts determined with [18F]fluorodeoxyglucose. J Nucl Cardiol. 1997;4:125-32.

    PubMed  Google Scholar 

  20. Dedobbeleer C, Hadefi A, Naeije R, Unger P. Left ventricular adaptation to acute hypoxia: a speckle-tracking echocardiography study. J Am Soc Echocardiogr. 2013;26:736-45.

    PubMed  Google Scholar 

  21. Allemann Y, Rotter M, Hutter D, Lipp E, Sartori C, Scherrer U, et al. Impact of acute hypoxic pulmonary hypertension on LV diastolic function in healthy mountaineers at high altitude. Am J Physiol Heart Circ Physiol. 2004;286:H856-62.

    CAS  PubMed  Google Scholar 

  22. Boos CJ, Hodkinson PD, Mellor A, Green NP, Bradley D, Greaves K, et al. The effects of prolonged acute hypobaric hypoxia on novel measures of biventricular performance. Echocardiography. 2013;30:534-41.

    PubMed  Google Scholar 

  23. Goebel B, Handrick V, Lauten A, Fritzenwanger M, Schutze J, Otto S, et al. Impact of acute normobaric hypoxia on regional and global myocardial function: A speckle tracking echocardiography study. Int J Cardiovasc Imaging. 2013;29:561-70.

    PubMed  Google Scholar 

  24. Chen CH, Liu YF, Lee SD, Huang CY, Lee WC, Tsai YL, et al. Altitude hypoxia increases glucose uptake in human heart. High Alt Med Biol. 2009;10:83-6.

    CAS  PubMed  Google Scholar 

  25. Axel L, Dougherty L. MR imaging of motion with spatial modulation of magnetization. Radiology. 1989;171:841-5.

    CAS  PubMed  Google Scholar 

  26. Clark NR, Reichek N, Bergey P, Hoffman EA, Brownson D, Palmon L, et al. Circumferential myocardial shortening in the normal human left ventricle. Assessment by magnetic resonance imaging using spatial modulation of magnetization. Circulation. 1991;84:67-74.

    CAS  PubMed  Google Scholar 

  27. Young AA, Imai H, Chang CN, Axel L. Two-dimensional left ventricular deformation during systole using magnetic resonance imaging with spatial modulation of magnetization. Circulation. 1994;89:740-52.

    CAS  PubMed  Google Scholar 

  28. Sengupta PP, Krishnamoorthy VK, Korinek J, Narula J, Vannan MA, Lester SJ, et al. Left ventricular form and function revisited: applied translational science to cardiovascular ultrasound imaging. J Am Soc Echocardiogr. 2007;20:539-51.

    PubMed  PubMed Central  Google Scholar 

  29. Carreras F, Ballester M, Pujadas S, Leta R, Pons-Llado G. Morphological and functional evidences of the helical heart from non-invasive cardiac imaging. Eur J Cardio-Thoracic Surg. 2006;29:S50-5.

    Google Scholar 

  30. Poveda F, Gil D, Marti E, Andaluz A, Ballester M, Carreras F. Helical structure of the cardiac ventricular anatomy assessed by diffusion tensor magnetic resonance imaging with multiresolution tractography. Revista espanola de cardiologia. 2013;66:782-90.

    PubMed  Google Scholar 

  31. Gao C, Lu K, Ye W, Li L, Cheng L. Reconstruction of the architecture of ventricular myocardial fibers in ex vivo human hearts. Heart Surg Forum. 2009;12:E225-9.

    PubMed  Google Scholar 

  32. Carreras F, Garcia-Barnes J, Gil D, Pujadas S, Li CH, Suarez-Arias R, et al. Left ventricular torsion and longitudinal shortening: Two fundamental components of myocardial mechanics assessed by tagged cine-MRI in normal subjects. Int J Cardiovasc Imaging. 2012;28:273-84.

    PubMed  Google Scholar 

  33. Allard MF, Schonekess BO, Henning SL, English DR, Lopaschuk GD. Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Physiol. 1994;267:H742-50.

    CAS  PubMed  Google Scholar 

  34. Goodwin GW, Taylor CS, Taegtmeyer H. Regulation of energy metabolism of the heart during acute increase in heart work. J Biol Chem. 1998;273:29530-9.

    CAS  PubMed  Google Scholar 

  35. Wheeler TJ. Translocation of glucose transporters in response to anoxia in heart. J Biol Chem. 1988;263:19447-54.

    CAS  PubMed  Google Scholar 

  36. Lopaschuk G. Regulation of carbohydrate metabolism in ischemia and reperfusion. Am Heart J. 2000;139:S115-9.

    CAS  PubMed  Google Scholar 

  37. Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90:207-58.

    CAS  PubMed  Google Scholar 

  38. Guazzi M, Myers J, Peberdy MA, Bensimhon D, Chase P, Arena R. Cardiopulmonary exercise testing variables reflect the degree of diastolic dysfunction in patients with heart failure-normal ejection fraction. J Cardiopul Rehabil Prev. 2010;30:165-72.

    Google Scholar 

  39. Kitzman DW, Higginbotham MB, Cobb FR, Sheikh KH, Sullivan MJ. Exercise intolerance in patients with heart failure and preserved left ventricular systolic function: failure of the Frank-Starling mechanism. J Am Coll Cardiol. 1991;17:1065-72.

    CAS  PubMed  Google Scholar 

  40. Nedeljkovic I, Banovic M, Stepanovic J, Giga V, Djordjevic-Dikic A, Trifunovic D, et al. The combined exercise stress echocardiography and cardiopulmonary exercise test for identification of masked heart failure with preserved ejection fraction in patients with hypertension. Eur J Prev Cardiol. 2015;23:1-11.

    Google Scholar 

  41. Forouzan O, Warczytowa J, Wieben O, Francois CJ, Chesler NC. Non-invasive measurement using cardiovascular magnetic resonance of changes in pulmonary artery stiffness with exercise. J Cardiovasc Magn Reson. 2015;17:109.

    PubMed  PubMed Central  Google Scholar 

  42. Kemppainen J, Fujimoto T, Kalliokoski KK, Viljanen T, Nuutila P, Knuuti J. Myocardial and skeletal muscle glucose uptake during exercise in humans. J Physiol. 2002;542:403-12.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Law WR, Raymond RM. Adenosine potentiates insulin-stimulated myocardial glucose uptake in vivo. Am J Physiol. 1988;254:H970-5.

    CAS  PubMed  Google Scholar 

  44. Mainwaring R, Lasley R, Rubio R, Wyatt DA, Mentzer RM Jr. Adenosine stimulates glucose uptake in the isolated rat heart. Surgery. 1988;103:445-9.

    CAS  PubMed  Google Scholar 

  45. Richards JC, Crecelius AR, Larson DG, Luckasen GJ, Dinenno FA. Impaired peripheral vasodilation during graded systemic hypoxia in healthy older adults: role of the sympathoadrenal system. Am J Physiol Heart Circ Physiol. 2017;312:H832-41.

    PubMed  PubMed Central  Google Scholar 

  46. Weisbrod CJ, Minson CT, Joyner MJ, Halliwill JR. Effects of regional phentolamine on hypoxic vasodilatation in healthy humans. J Physiol. 2001;537:613-21.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dan Consigny, Sara John, Jenelle Fuller, and Kent MacLaughlin for their contributions to this study.

Disclosure

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory P. Barton PhD.

Additional information

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarizes the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

Funding

Research support was provided in part by the University of Wisconsin-Madison School of Medicine and Public Health Department Research and Development Funds from the Departments of Pediatrics (Eldridge), Medicine (Goss) and Radiology (McMillan), as well as additional funding from the Wisconsin Alumni Research Foundation (Eldridge). Kara Goss and portions of the project are supported by the University of Wisconsin Clinical and Translational Science Award (CTSA) program, through the NIH National Center for Advancing Translational Sciences (NCATS), Grant NIH UL1TR000427 (PI Dresher; 4KL2TR000428-10).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 883 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barton, G.P., Vildberg, L., Goss, K. et al. Simultaneous determination of dynamic cardiac metabolism and function using PET/MRI. J. Nucl. Cardiol. 26, 1946–1957 (2019). https://doi.org/10.1007/s12350-018-1287-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-018-1287-7

Keywords

Navigation