Skip to main content

Advertisement

Log in

Serum S100β Levels Are Linked with Cognitive Decline and Peripheral Inflammation in Spinocerebellar Ataxia Type 2

  • RESEARCH
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Experimental and clinical studies have indicated a potential role of the protein S100β in the pathogenesis and phenotype of neurodegenerative diseases. However, its impact on spinocerebellar ataxia type 2 (SCA2) remains to be elucidated. The objective of the study is to determine the serum levels of S100β in SCA2 and its relationship with molecular, clinical, cognitive, and peripheral inflammatory markers of the disease. Serum concentrations of S100β were measured by enzyme-linked immunosorbent assay in 39 SCA2 subjects and 36 age- and gender-matched controls. Clinical scores of ataxia, non-ataxia symptoms, cognitive dysfunction, and some blood cell count–derived inflammatory indices were assessed. The SCA2 individuals manifested S100β levels similar to the control group, at low nanomolar concentrations. However, the S100β levels were directly associated with a better performance of cognitive evaluation within the SCA2 cohort. Moreover, the S100β levels were inversely correlated with most peripheral inflammatory indices. Indeed, the neutrophil-to-lymphocyte ratio significantly mediated the effect of serum S100β on cognitive performance, even after controlling for the ataxia severity in the causal mediation analysis. Our findings suggested that, within physiologic concentrations, the protein S100β exerts a neuroprotective role against cognitive dysfunction in SCA2, likely via the suppression of pro-inflammatory mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

This dataset is not publicly available and can be asked from the Cuban authors directly upon reasonable request.

References

  1. Gonzalez LL, Garrie K, Turner MD. Role of S100 proteins in health and disease. Biochim Biophys Acta - Mol Cell Res [Internet]. 2020;1867:118677. Available from: https://doi.org/10.1016/j.bbamcr.2020.118677

  2. Duprez K, Fan L. Structural basis for S100B interaction with its target proteins. J Mol Genet Med [Internet]. 2018;12:1–6. Available from: https://www.omicsonline.org/open-access/structural-basis-for-s100b-interaction-with-its-target-proteins-1747-0862-1000366-104507.html. Accessed 23 May 2023.

  3. Donato R, Sorci G, Bianchi R, Riuzzi F, Tubaro C, Arcuri C, et al. S100B protein, a damage-associated molecular pattern protein in the brain and heart, and beyond. Cardiovasc Psychiatry Neurol. 2010;2010:1.

    Article  Google Scholar 

  4. Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, et al. S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta - Mol Cell Res [Internet]. 2009;1793:1008–22. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0167488908004096. Accessed 12 Jun 2023.

  5. Sorci G. S100B protein in tissue development, repair and regeneration. World J Biol Chem [Internet]. 2013;4:1. Available from: http://www.wjgnet.com/1949-8454/full/v4/i1/1.htm. Accessed 2 Ago 2023.

  6. Michetti F, D’Ambrosi N, Toesca A, Puglisi MA, Serrano A, Marchese E, et al. The S100B story: from biomarker to active factor in neural injury. J Neurochem. 2019;148:168–87.

    Article  CAS  PubMed  Google Scholar 

  7. Michetti F, Corvino V, Geloso MC, Lattanzi W, Bernardini C, Serpero L, et al. The S100B protein in biological fluids: more than a lifelong biomarker of brain distress. J Neurochem. 2012;120:644–59.

    Article  CAS  PubMed  Google Scholar 

  8. Steiner J, Bogerts B, Schroeter ML, Bernstein HG. S100B protein in neurodegenerative disorders. Clin Chem Lab Med. 2011;49:409–24.

    Article  CAS  PubMed  Google Scholar 

  9. Hearst SM, Walker LR, Shao Q, Lopez M, Raucher D, Vig PJS. The design and delivery of a thermally responsive peptide to inhibit S100B-mediated neurodegeneration. Neuroscience [Internet]. 2011;197:369–80. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0306452211010797. Accessed 17 May 2023.

  10. Vig PJS, Lopez ME, Wei J, D’Souza DR, Subramony S, Henegar J, et al. Glial S100B positive vacuoles in Purkinje cells: earliest morphological abnormality in SCA1 transgenic mice. J Neurol Sci Turk [Internet]. 2006;23:166–74. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2174790&tool=pmcentrez&rendertype=abstract. Accessed 18 May 2023.

  11. Vig PJS, Hearst S, Shao Q, Lopez ME, Murphy HA, Safaya E. Glial S100B protein modulates mutant ataxin-1 aggregation and toxicity: TRTK12 peptide, a potential candidate for SCA1 therapy. The Cerebellum [Internet]. 2011;10:254–66. Available from: https://doi.org/10.1007/s12311-011-0262-5. Accessed 12 May 2023.

  12. Vig PJS, Shao Q, Subramony SH, Lopez ME, Safaya E. Bergmann glial S100B activates myo-inositol monophosphatase 1 and co-localizes to Purkinje cell vacuoles in SCA1 transgenic mice. Cerebellum. 2009;8:231–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tort ABL, Portela LVC, Rockenbach IC, Monte TL, Pereira ML, Souza DO, et al. S100B and NSE serum concentrations in Machado Joseph disease. Clin Chim Acta. 2005;351:143–8.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou J, Lei L, Shi Y, Wang J, Jiang H, Shen L, et al. Serum concentrations of NSE and S100B in spinocerebellar ataxia type 3/Machado-Joseph disease. Zhong Nan Da Xue Xue Bao Yi Xue Ban [Internet]. 2011;36:504–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21743141. Accessed 14 Apr 2023.

  15. Velázquez-Pérez LC, Rodríguez-Labrada R, Fernandez-Ruiz J. Spinocerebellar ataxia type 2: clinicogenetic aspects, mechanistic insights, and management approaches. Front Neurol [Internet]. 2017;8:472. Available from: https://doi.org/10.3389/fneur.2017.00472/full. Accessed 12 Jan 2022. 

  16. Auburger GWJ. Spinocerebellar ataxia type 2. Handb Clin Neurol. 2012;103:423–36.

    Article  PubMed  Google Scholar 

  17. Egorova PA, Bezprozvanny IB. Molecular mechanisms and therapeutics for spinocerebellar ataxia type 2. Neurotherapeutics [Internet]. 2019;16:1050–73. Available from: https://doi.org/10.1007/s13311-019-00777-6. Accessed 25 May 2023.

  18. Scoles DR, Dansithong W, Pflieger LT, Paul S, Gandelman M, Figueroa KP, et al. ALS-associated genes in SCA2 mouse spinal cord transcriptomes. Hum Mol Genet [Internet]. 2020;29:1658–72. Available from: https://academic.oup.com/hmg/article/29/10/1658/5822587. Accessed 20 May 2023.

  19. Canet-Pons J, Sen N, Arsović A, Almaguer-Mederos L-E, Halbach M V, Key J, et al. Atxn2-CAG100-KnockIn mouse spinal cord shows progressive TDP43 pathology associated with cholesterol biosynthesis suppression. Neurobiol Dis [Internet]. 2021;152:105289. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0969996121000383. Accessed 20 May 2023.

  20. Vázquez‐Mojena Y, Rodríguez‐Córdova Y, Dominguez‐Barrios Y, León‐Arcia K, Miranda‐Becerra D, Gonzalez‐Zaldivar Y, et al. Peripheral inflammation links with the severity of clinical phenotype in spinocerebellar ataxia 2. Mov Disord [Internet]. 2023;38:880–5. Available from: https://doi.org/10.1002/mds.29359. Accessed 20 May 2023.

  21. Schmitz-Hubsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology [Internet]. 2006;66:1717–20. Available from: https://doi.org/10.1212/01.wnl.0000219042.60538.92. Accessed 29 May 2023.

  22. Schmitz-Hübsch T, Coudert M, Bauer P, Giunti P, Globas C, Baliko L, et al. Spinocerebellar ataxia types 1, 2, 3, and 6: disease severity and nonataxia symptoms. Neurology. 2008;71:982–9.

    Article  PubMed  Google Scholar 

  23. Hoche F, Guell X, Vangel MG, Sherman JC, Schmahmann JD. The cerebellar cognitive affective / Schmahmann syndrome scale. Brain. 2017;141:248–70.

    Article  PubMed Central  Google Scholar 

  24. Zahorec R. Neutrophil-to-lymphocyte ratio, past, present and future perspectives. Bratislava Med J [Internet]. 2021;122:474–88. Available from: http://www.elis.sk/index.php?page=shop.product_details&flypage=flypage.tpl&product_id=7271&category_id=171&option=com_virtuemart. Accessed 20 May 2023.

  25. Balta S, Ozturk C. The platelet-lymphocyte ratio: a simple, inexpensive and rapid prognostic marker for cardiovascular events. Platelets [Internet]. 2015;26:680–1. Available from: https://doi.org/10.3109/09537104.2014.979340. Accessed 20 May 2023.

  26. Chen J-H, Zhai E-T, Yuan Y-J, Wu K-M, Xu J-B, Peng J-J, et al. Systemic immune-inflammation index for predicting prognosis of colorectal cancer. World J Gastroenterol [Internet]. 2017;23:6261–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28974892. Accessed 20 May 2023.

  27. Ren H, Liu X, Wang L, Gao Y. Lymphocyte-to-monocyte ratio: a novel predictor of the prognosis of acute ischemic stroke. J Stroke Cerebrovasc Dis [Internet]. 2017;26:2595–602. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1052305717303026. Accessed 20 May 2023.

  28. Selinfreund RH, Barger SW, Pledger WJ, Van Eldik LJ. Neurotrophic protein S100 beta stimulates glial cell proliferation. Proc Natl Acad Sci [Internet]. 1991;88:3554–8. Available from: https://doi.org/10.1073/pnas.88.9.3554. Accessed 10 Jun 2023.

  29. Lam V, Albrecht MA, Takechi R, Giles C, James AP, Foster JK, et al. The serum concentration of the calcium binding protein S100B is positively associated with cognitive performance in older adults. Front Aging Neurosci [Internet]. 2013;5:1–6. Available from: https://doi.org/10.3389/fnagi.2013.00061/abstract. Accessed 13 Jun 2023.

  30. Yu H, Li H, Liu X, Du X, Deng B. Levels of serum S100B are associated with cognitive dysfunction in patients with type 2 diabetes. Aging (Albany NY). 2020;12:4193–203.

    Article  CAS  PubMed  Google Scholar 

  31. Christl J, Verhülsdonk S, Pessanha F, Menge T, Seitz RJ, Kujovic M, et al. Association of cerebrospinal fluid S100B protein with core biomarkers and cognitive deficits in prodromal and mild Alzheimer’s disease. J Alzheimer’s Dis [Internet]. 2019;72:1119–27. Available from: https://doi.org/10.3233/JAD-190550. Accessed 12 Jun 2023.

  32. Cristóvão JS, Morris VK, Cardoso I, Leal SS, Martínez J, Botelho HM, et al. The neuronal S100B protein is a calcium-tuned suppressor of amyloid- aggregation. Sci Adv. 2018;4:1–13.

    Article  Google Scholar 

  33. Figueira AJ, Saavedra J, Cardoso I, Gomes CM. S100B chaperone multimers suppress the formation of oligomers during A β 42 aggregation. 2023;1–11.

  34. Nishiyama H, Knöpfel T, Endo S, Itohara S. Glial protein S100B modulates long-term neuronal synaptic plasticity. Proc Natl Acad Sci U S A. 2002;99:4037–42.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. Kleindienst A, McGinn MJ, Harvey HB, Colello RJ, Hamm RJ, Bullock MR. Enhanced hippocampal neurogenesis by intraventricular S100B infusion is associated with improved cognitive recovery after traumatic brain injury. J Neurotrauma [Internet]. 2005;22:645–55. Available from: https://doi.org/10.1089/neu.2005.22.645. Accessed 13 Jun 2023. 

  36. Gerlai R, Wojtowicz JM, Marks A, Roder J. Overexpression of a calcium-binding protein, S100 beta, in astrocytes alters synaptic plasticity and impairs spatial learning in transgenic mice. Learn Mem [Internet]. 1995;2:26–39. Available from: https://doi.org/10.1101/lm.2.1.26. Accessed 17 Jul 2023.

  37. Glikmann-Johnston Y, Oren N, Hendler T, Shapira-Lichter I. Distinct functional connectivity of the hippocampus during semantic and phonemic fluency. Neuropsychologia [Internet]. 2015;69:39–49. Available from: https://linkinghub.elsevier.com/retrieve/pii/S002839321500038X. Accessed 16 Jul 2023.

  38. Zammit AR, Ezzati A, Katz MJ, Zimmerman ME, Lipton ML, Sliwinski MJ, et al. The association of visual memory with hippocampal volume. Ginsberg SD, editor. PLoS One [Internet]. 2017;12:e0187851. Available from: https://doi.org/10.1371/journal.pone.0187851. Accessed 16 Dec 2023.

  39. Olsen RK, Moses SN, Riggs L, Ryan JD. The hippocampus supports multiple cognitive processes through relational binding and comparison. Front Hum Neurosci [Internet]. 2012;6. Available from: https://doi.org/10.3389/fnhum.2012.00146/abstract. Accessed 16 Dec 2023.

  40. Mercadillo RE, Galvez V, Díaz R, Hernández-Castillo CR, Campos-Romo A, Boll M-C, et al. Parahippocampal gray matter alterations in spinocerebellar ataxia type 2 identified by voxel based morphometry. J Neurol Sci [Internet]. 2014;347:50–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022510X14005978. Accessed 16 Dec 2023.

  41. Siciliano L, Olivito G, Urbini N, Silveri MC, Leggio M. The rising role of cognitive reserve and associated compensatory brain networks in spinocerebellar ataxia type 2. J Neurol [Internet]. 2023;270:5071–84. Available from: https://doi.org/10.1007/s00415-023-11855-3. Accessed 16 Dec 2023.

  42. Langeh U, Singh S. Targeting S100B protein as a surrogate biomarker and its role in various neurological disorders. Curr Neuropharmacol [Internet]. 2020;19:265–77. Available from: https://www.eurekaselect.com/184275/article. Accessed 25 May 2023.

  43. Kazakov AS, Sofin AD, Avkhacheva N V., Deryusheva EI, Rastrygina VA, Permyakova ME, et al. Interferon-β activity is affected by S100B protein. Int J Mol Sci [Internet]. 2022;23:1997. Available from: https://www.mdpi.com/1422-0067/23/4/1997. Accessed 14 May 2023. 

  44. Kazakov AS, Sokolov AS, Vologzhannikova AA, Permyakova ME, Khorn PA, Ismailov RG, et al. Interleukin-11 binds specific EF-hand proteins via their conserved structural motifs. J Biomol Struct Dyn. 2017;35:78–91.

    Article  CAS  PubMed  Google Scholar 

  45. Gupta AA, Chou R-H, Li H, Yang L-W, Yu C. Structural insights into the interaction of human S100B and basic fibroblast growth factor (FGF2): effects on FGFR1 receptor signaling. Biochim Biophys Acta - Proteins Proteomics [Internet]. 2013;1834:2606–19. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1570963913003464. Accessed 14 May 2023.

  46. Halbach MV, Gispert S, Stehning T, Damrath E, Walter M, Auburger G. Atxn2 knockout and CAG42-knock-in cerebellum shows similarly dysregulated expression in calcium homeostasis pathway. The Cerebellum [Internet]. 2017;16:68–81. Available from: https://doi.org/10.1007/s12311-016-0762-4. Accessed 16 Jun 2023.

  47. Liu J, Tang TS, Tu H, Nelson O, Herndon E, Huynh DP, et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci. 2009; 29(29):9148-62. Accessed 16 Jun 2023.

  48. Davey GE, Murmann P, Heizmann CW. Intracellular Ca 2 ؉ and Zn 2 ؉ levels regulate the alternative cell density-dependent secretion of S100B in human glioblastoma cells . J Biol Chem [Internet]. 2001;276:30819–26. Available from: https://doi.org/10.1074/jbc.M103541200. Accessed 16 Jun 2023.

  49. Otto M, Bahn E, Wiltfang J, Boekhoff I, Beuche W. Decrease of S100 beta protein in serum of patients with amyotrophic lateral sclerosis. Neurosci Lett. 1998;240:171–3.

    Article  CAS  PubMed  Google Scholar 

  50. Barger SW, Van Eldik LJ, Mattson MP. S100β protects hippocampal neurons from damage induced by glucose deprivation. Brain Res [Internet]. 1995;677:167–70. Available from: https://linkinghub.elsevier.com/retrieve/pii/000689939500160R. Accessed 17 Dec 2023.

  51. Rajewska-Rager A, Dmitrzak-Weglarz M, Kapelski P, Lepczynska N, Pawlak J, Twarowska-Hauser J, et al. Longitudinal assessment of S100B serum levels and clinical factors in youth patients with mood disorders. Sci Rep [Internet]. 2021;11:1–9. Available from: https://doi.org/10.1038/s41598-021-91577-6

  52. Bluhm B, Laffer B, Hirnet D, Rothermundt M, Ambree O, Lohr C. Normal cerebellar development in S100B-deficient mice. Cerebellum. 2015;14:119–27.

    Article  CAS  PubMed  Google Scholar 

  53. Kim HSR, Seto-Ohshima A, Nishiyama H, Itohara S. Normal delay eyeblink conditioning in mice devoid of astrocytic S100B. Neurosci Lett [Internet]. 2011;489:148–53. Available from: https://doi.org/10.1016/j.neulet.2010.12.005

  54. Jung BC, Choi SI, Du AX, Cuzzocreo JL, Ying HS, Landman BA, et al. MRI shows a region-specific pattern of atrophy in spinocerebellar ataxia type 2. Cerebellum. 2012;11:272–9.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Han Q, Yang J, Xiong H, Shang H. Voxel‐based meta‐analysis of gray and white matter volume abnormalities in spinocerebellar ataxia type 2. Brain Behav [Internet]. 2018;8:1–9. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/brb3.1099

  56. Rüb U, Farrag K, Seidel K, Brunt ER, Heinsen H, Bürk K, et al. Involvement of the cholinergic basal forebrain nuclei in spinocerebellar ataxia type 2 ( SCA2). Neuropathology Appl Neurobio. 2013;2:634–43.

    Article  Google Scholar 

  57. Serbinek D, Ullrich C, Pirchl M, Hochstrasser T, Schmidt-Kastner R, Humpel C. S100b counteracts neurodegeneration of rat cholinergic neurons in brain slices after oxygen-glucose deprivation. Cardiovasc Psychiatry Neurol [Internet]. 2010;2010:1–7. Available from: https://www.hindawi.com/journals/cpn/2010/106123/. Accessed 17 Dec 2023.

  58. Gonçalves CA, Leite MC, Guerra MC. Adipocytes as an important source of serum S100B and possible roles of this protein in adipose tissue. Cardiovasc Psychiatry Neurol [Internet]. 2010;2010:1–7. Available from: https://www.hindawi.com/journals/cpn/2010/790431/. Accessed 18 Jun 2023.

  59. Ercole A, Thelin EP, Holst A, Bellander BM, Nelson DW. Kinetic modelling of serum S100b after traumatic brain injury. BMC Neurol [Internet]. 2016;16:93. Available from: https://doi.org/10.1186/s12883-016-0614-3

  60. Kanner AA, Marchi N, Fazio V, Mayberg MR, Koltz MT, Siomin V, et al. Serum S100beta: a noninvasive marker of blood-brain barrier function and brain lesions. Cancer [Internet]. 2003;97:2806–13. Available from: https://doi.org/10.1002/cncr.11409. Accessed 17 Dec 2023. 

  61. Kleindienst A, Meissner S, Eyupoglu IY, Parsch H, Schmidt C, Buchfelder M. Dynamics of S100B release into serum and cerebrospinal fluid following acute brain injury. 2010. p. 247–50. Available from: https://doi.org/10.1007/978-3-211-98811-4_46. Accessed 20 Ago 2023. 

  62. Petzold A, Keir G, Lim D, Smith M, Thompson EJ. Cerebrospinal fluid (CSF) and serum S100B: release and wash-out pattern. Brain Res Bull [Internet]. 2003;61:281–5. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0361923003000911. Accessed 12 Jun 2023.

Download references

Acknowledgements

We express our gratitude to all SCA2 individuals and healthy controls for their cooperation. We also thank the Cuban Ministry of Science, Technology and Environment, the Cuban Ministry of Public Health, and the Alexander von Humboldt Foundation for providing funds for this study.

Funding

This work was supported by the Cuban Ministry of Science, Technology and Environment through the National Program of Neurosciences and Neurotechnology (Project Code: PN305LH013-034), the Cuban Ministry of Public Health, and the Alexander von Humboldt Foundation (Digital Cooperation Fellowship for the project “Identification of preclinical and progression biomarker patterns in spinocerebellar ataxia type 2, using machine learning approaches on complex multimodal cross-sectional and longitudinal data sets”). All authors received funding from the Cuban Ministry of Science, Technology and Environment and the Cuban Ministry of Public Health. YVM, RRL, and LVP received funding from the Alexander von Humboldt Foundation. None has received any other funding for the last 12 months relevant or not for this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and study design: YVM, RRL, MARA, and LVP. Literature search: YVM and RRL. Data collection: YVM, YCR, YDB, KLA, MEFH, NPF, RRL, and LVP. Data analysis: YVM and RRL. Data interpretation: YVM, RRL, MARA, and LVP. Writing—original draft: YVM and RRL. Writing—review and editing: MARA and LVP All authors reviewed the manuscript.

Corresponding authors

Correspondence to Roberto Rodríguez-Labrada or Maria de los Angeles Robinson-Agramonte.

Ethics declarations

Ethics Approval and Consent to Participate

The study was approved by the ethics committee of the Centre for the Research and Rehabilitation of Hereditary Ataxias (Holguin, Cuba) and was conducted according to the Declaration of Helsinki. Written informed consent was obtained from each participant.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Luis Velázquez-Pérez is the senior author.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Supplementary file2 (DOCX 14.6 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vázquez-Mojena, Y., Rodríguez-Labrada, R., Córdova-Rodríguez, Y. et al. Serum S100β Levels Are Linked with Cognitive Decline and Peripheral Inflammation in Spinocerebellar Ataxia Type 2. Cerebellum (2024). https://doi.org/10.1007/s12311-024-01665-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12311-024-01665-2

Keywords

Navigation