Skip to main content
Log in

Diagnostic Yield of NGS Tests for Hereditary Ataxia: a Systematic Review

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Next-generation sequencing (NGS), comprising targeted panels (TP), exome sequencing (ES), and genome sequencing (GS) became robust clinical tools for diagnosing hereditary ataxia (HA). Determining their diagnostic yield (DY) is crucial for optimal clinical decision-making. We conducted a comprehensive systematic literature review on the DY of NGS tests for HA. We searched PubMed and Embase databases for relevant studies between 2016 and 2022 and manually examined reference lists of relevant reviews. Eligible studies described the DY of NGS tests in patients with ataxia as a significant feature. Data from 33 eligible studies showed a median DY of 43% (IQR = 9.5–100%). The median DY for TP and ES was 46% and 41.9%, respectively. Higher DY was associated with specific phenotype selection, such as episodic ataxia at 68.35% and early and late onset of ataxia at 46.4% and 54.4%. Parental consanguinity had a DY of 52.4% (p = 0.009), and the presumed autosomal recessive (AR) inheritance pattern showed 62.5%. There was a difference between the median DY of studies that performed targeted sequencing (tandem repeat expansion, TRE) screening and those that did not (p = 0.047). A weak inverse correlation was found between DY and the extent of previous genetic investigation (rho = − 0.323; p = 0.065). The most common genes were CACNA1A and SACS. DY was higher for presumed AR inheritance pattern, positive family history, and parental consanguinity. ES appears more advantageous due to the inclusion of rare genes that might be excluded in TP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Parodi L, Coarelli G, Stevanin G, Brice A, Durr A. Hereditary ataxias and paraparesias: clinical and genetic update. Curr Opin Neurol. 2018;31(4):462–71. https://doi.org/10.1097/WCO.0000000000000585.

    Article  PubMed  Google Scholar 

  2. Novis LE, Spitz M, Jardim M, Raskin S, Teive HAG. Evidence and practices of the use of next generation sequencing in patients with undiagnosed autosomal dominant cerebellar ataxias: a review. Arq Neuropsiquiatr. 2020;78(9):576–85. https://doi.org/10.1590/0004-282X20200017.

    Article  PubMed  Google Scholar 

  3. Durr A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol. 2010;9(9):885–94. https://doi.org/10.1016/S1474-4422(10)70183-6.

    Article  CAS  PubMed  Google Scholar 

  4. Coarelli G, Wirth T, Tranchant C, Koenig M, Durr A, Anheim M. The inherited cerebellar ataxias: an update. J Neurol. 2023;270(1):208–22. https://doi.org/10.1007/s00415-022-11383-6.

    Article  PubMed  Google Scholar 

  5. Sawyer SL, Schwartzentruber J, Beaulieu CL, Dyment D, Smith A, Warman Chardon J, Yoon G, Rouleau GA, Suchowersky O, Siu V, Murphy L, Hegele RA, Marshall CR, FORGE Canada Consortium, Bulman DE, Majewski J, Tarnopolsky M, Boycott KM. Exome sequencing as a diagnostic tool for pediatric-onset ataxia. Hum Mutat. 2014;35(1):45–9. https://doi.org/10.1002/humu.22451.

    Article  PubMed  Google Scholar 

  6. Krygier M, Kwarciany M, Wasilewska K, Pienkowski VM, Krawczyńska N, Zielonka D, Kosińska J, Stawinski P, Rudzińska-Bar M, Boczarska-Jedynak M, Karaszewski B, Limon J, Sławek J, Płoski R, Rydzanicz M. A study in a Polish ataxia cohort indicates genetic heterogeneity and points to MTCL1 as a novel candidate gene. Clin Genet. 2019;95(3):415–9. https://doi.org/10.1111/cge.13489.

    Article  CAS  PubMed  Google Scholar 

  7. Weiss MM, Van der Zwaag B, Jongbloed JD, Vogel MJ, Brüggenwirth HT, Lekanne Deprez RH, Mook O, Ruivenkamp CA, van Slegtenhorst MA, van den Wijngaard A, Waisfisz Q, Nelen MR, van der Stoep N. Best practice guidelines for the use of next-generation sequencing applications in genome diagnostics: a national collaborative study of Dutch genome diagnostic laboratories. Hum Mutat. 2013;34(10):1313–21. https://doi.org/10.1002/humu.22368.

    Article  PubMed  Google Scholar 

  8. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24. https://doi.org/10.1038/gim.2015.30.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kim M, Kim AR, Kim JS, et al. Clarification of undiagnosed ataxia using whole-exome sequencing with clinical implications. Parkinsonism Relat Disord. 2020;80:58–64. https://doi.org/10.1016/j.parkreldis.2020.08.040.

    Article  PubMed  Google Scholar 

  10. Montaut S, Tranchant C, Drouot N, et al. Assessment of a targeted gene panel for identification of genes associated with movement disorders. JAMA Neurol. 2018;75(10):1234–45. https://doi.org/10.1001/jamaneurol.2018.1478.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Galatolo D, Tessa A, Filla A, Santorelli FM. Clinical application of next generation sequencing in hereditary spinocerebellar ataxia: increasing the diagnostic yield and broadening the ataxia-spasticity spectrum. A retrospective analysis. Neurogenetics. 2018;19(1):1–8. https://doi.org/10.1007/s10048-017-0532-6.

    Article  CAS  PubMed  Google Scholar 

  12. Sterne JAC, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomized studies of interventions. BMJ. 2016;355:i4919. https://doi.org/10.1136/bmj.i4919.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Maksemous N, Roy B, Smith RA, Griffiths LR. Next-generation sequencing identifies novel CACNA1A gene mutations in episodic ataxia type 2. Mol Genet Genomic Med. 2016;4(2):211–22. https://doi.org/10.1002/mgg3.196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maksemous N, Sutherland HG, Smith RA, Haupt LM, Griffiths LR. Comprehensive exonic sequencing of known ataxia genes in episodic ataxia. Biomedicines. 2020;8(5):134. https://doi.org/10.3390/biomedicines8050134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Coutelier M, Hammer MB, Stevanin G, Monin ML, Davoine CS, Mochel F, Labauge P, Ewenczyk C, Ding J, Gibbs JR, Hannequin D, Melki J, Toutain A, Laugel V, Forlani S, Charles P, Broussolle E, Thobois S, Afenjar A, et al. Spastic Paraplegia and Ataxia Network. Efficacy of exome-targeted capture sequencing to detect mutations in known cerebellar ataxia genes. JAMA Neurol. 2018;75(5):591–9. https://doi.org/10.1001/jamaneurol.2017.5121.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Santos M, Damásio J, Carmona S, Neto JL, Dehghani N, Guedes LC, Barbot C, Barros J, Brás J, Sequeiros J, Guerreiro R. Molecular characterization of Portuguese patients with hereditary cerebellar ataxia. Cells. 2022;11(6):981. https://doi.org/10.3390/cells11060981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Radziwonik W, Elert-Dobkowska E, Klimkowicz-Mrowiec A, Ziora-Jakutowicz K, Stepniak I, Zaremba J, Sulek A. Application of a custom NGS gene panel revealed a high diagnostic utility for molecular testing of hereditary ataxias. J Appl Genet. 2022;63(3):513–25. https://doi.org/10.1007/s13353-022-00701-3.

    Article  CAS  PubMed  Google Scholar 

  18. Németh AH, Kwasniewska AC, Lise S, Parolin Schnekenberg R, Becker EB, Bera KD, Shanks ME, Gregory L, Buck D, Zameel Cader M, Talbot K, de Silva R, Fletcher N, Hastings R, Jayawant S, Morrison PJ, Worth P, Taylor M, Tolmie J, et al. Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model. Brain. 2013;136(Pt 10):3106–18. https://doi.org/10.1093/brain/awt236.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wan N, Chen Z, Wan L, Yuan H, Tang Z, Liu M, Peng Y, Peng L, Lei L, Xie Y, Deng Q, Wang S, Wang C, Peng H, Hou X, Shi Y, Long Z, Qiu R, Xia K, et al. Genetic etiology of a Chinese ataxia cohort: expanding the mutational spectrum of hereditary ataxias. Parkinsonism Relat Disord. 2021;89:120–7. https://doi.org/10.1016/j.parkreldis.2021.07.010.

    Article  CAS  PubMed  Google Scholar 

  20. Hadjivassiliou M, Martindale J, Shanmugarajah P, et al. Causes of progressive cerebellar ataxia: prospective evaluation of 1500 patients. J Neurol Neurosurg Psychiatry. 2017;88:301–9.

    Article  CAS  PubMed  Google Scholar 

  21. Kang C, Liang C, Ahmad KE, et al. High degree of genetic heterogeneity for hereditary cerebellar ataxias in Australia. Cerebellum. 2019;18:137–46. https://doi.org/10.1007/s12311-018-0969-7.

    Article  CAS  PubMed  Google Scholar 

  22. da Graça FF, Peluzzo TM, Bonadia LC, Martinez ARM, Diniz de Lima F, Pedroso JL, Barsottini OGP, Gama MTD, Akçimen F, Dion PA, Rouleau GA, Marques W Jr, França MC Jr. Diagnostic yield of whole exome sequencing for adults with ataxia: a Brazilian perspective. Cerebellum. 2022;21(1):49–54. https://doi.org/10.1007/s12311-021-01268-1.

    Article  CAS  PubMed  Google Scholar 

  23. Cheng HL, Shao YR, Dong Y, Dong HL, Yang L, Ma Y, Shen Y, Wu ZY. Genetic spectrum and clinical features in a cohort of Chinese patients with autosomal recessive cerebellar ataxias. Transl Neurodegener. 2021;10(1):40. https://doi.org/10.1186/s40035-021-00264-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun M, Johnson AK, Nelakuditi V, Guidugli L, Fischer D, Arndt K, Ma L, Sandford E, Shakkottai V, Boycott K, Warman-Chardon J, Li Z, Del Gaudio D, Burmeister M, Gomez CM, Waggoner DJ, Das S. Targeted exome analysis identifies the genetic basis of disease in over 50% of patients with a wide range of ataxia-related phenotypes. Genet Med. 2019;21(1):195–206. https://doi.org/10.1038/s41436-018-0007-7.

    Article  CAS  PubMed  Google Scholar 

  25. Gauquelin L, Hartley T, Tarnopolsky M, Dyment DA, Brais B, Geraghty MT, Tétreault M, Ahmed S, Rojas S, Choquet K, Majewski J, Bernier F, Innes AM, Rouleau G, Suchowersky O, Boycott KM, Yoon G. Channelopathies are a frequent cause of genetic ataxias associated with cerebellar atrophy. Mov Disord Clin Pract. 2020;7(8):940–9. https://doi.org/10.1002/mdc3.13086.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Perez Maturo J, Zavala L, Vega P, González-Morón D, Medina N, Salinas V, Rosales J, Córdoba M, Arakaki T, Garretto N, Rodríguez-Quiroga S, Kauffman MA. Overwhelming genetic heterogeneity and exhausting molecular diagnostic process in chronic and progressive ataxias: facing it up with an algorithm, a gene, a panel at a time. J Hum Genet. 2020;65(10):895–902. https://doi.org/10.1038/s10038-020-0785-z.

    Article  CAS  PubMed  Google Scholar 

  27. Valence S, Cochet E, Rougeot C, Garel C, Chantot-Bastaraud S, Lainey E, Afenjar A, Barthez MA, Bednarek N, Doummar D, Faivre L, Goizet C, Haye D, Heron B, Kemlin I, Lacombe D, Milh M, Moutard ML, Riant F, et al. Exome sequencing in congenital ataxia identifies two new candidate genes and highlights a pathophysiological link between some congenital ataxias and early infantile epileptic encephalopathies. Genet Med. 2019;21(3):553–63. https://doi.org/10.1038/s41436-018-0089-2.

    Article  CAS  PubMed  Google Scholar 

  28. da Costa SCG, Rezende Filho FM, de Freitas JL, de Assis Pereira Matos PCA, Della-Ripa B, França MC Jr, Junior MW, Santos M, IVB C, Vale TC, Kok F, Alonso I, Pedroso JL, OGP B. Clinical and genetic characterization of Brazilian patients with ataxia and oculomotor apraxia. Mov Disord. 2022;37(6):1309–16. https://doi.org/10.1002/mds.29015.

    Article  CAS  PubMed  Google Scholar 

  29. Choi KD, Kim JS, Kim HJ, Jung I, Jeong SH, Lee SH, Kim DU, Kim SH, Choi SY, Shin JH, Kim DS, Park KP, Kim HS, Choi JH. Genetic variants associated with episodic ataxia in Korea. Sci Rep. 2017;7(1):13855. https://doi.org/10.1038/s41598-017-14254-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mutlu-Albayrak H, Kırat E, Gürbüz G. Childhood-onset autosomal recessive ataxias: a cross-sectional study from Turkey. Neurogenetics. 2020;21(1):59–66. https://doi.org/10.1007/s10048-019-00597-y.

    Article  CAS  PubMed  Google Scholar 

  31. Ignatius E, Isohanni P, Pohjanpelto M, Lahermo P, Ojanen S, Brilhante V, Palin E, Suomalainen A, Lönnqvist T, Carroll CJ. Genetic background of ataxia in children younger than 5 years in Finland. Neurol Genet. 2020;6(4):e444. https://doi.org/10.1212/NXG.0000000000000444.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shakya S, Kumari R, Suroliya V, Tyagi N, Joshi A, Garg A, Singh I, Kalikavil Puthanveedu D, Cherian A, Mukerji M, Srivastava AK, Faruq M. Whole exome and targeted gene sequencing to detect pathogenic recessive variants in early onset cerebellar ataxia. Clin Genet. 2019;96(6):566–74. https://doi.org/10.1111/cge.13625.

    Article  CAS  PubMed  Google Scholar 

  33. Arslan EA, Öncel İ, Ceylan AC, Topçu M, Topaloğlu H. Genetic and phenotypic features of patients with childhood ataxias diagnosed by next-generation sequencing gene panel. Brain Dev. 2020;42(1):6–18. https://doi.org/10.1016/j.braindev.2019.08.004.

    Article  PubMed  Google Scholar 

  34. Ngo KJ, Rexach JE, Lee H, Petty LE, Perlman S, Valera JM, Deignan JL, Mao Y, Aker M, Posey JE, Jhangiani SN, Coban-Akdemir ZH, Boerwinkle E, Muzny D, Nelson AB, Hassin-Baer S, Poke G, Neas K, Geschwind MD, et al. A diagnostic ceiling for exome sequencing in cerebellar ataxia and related neurological disorders. Hum Mutat. 2020;41(2):487–501. https://doi.org/10.1002/humu.23946.

    Article  CAS  PubMed  Google Scholar 

  35. Bogdanova-Mihaylova P, Hebert J, Moran S, Murphy M, Ward D, Walsh RA, Murphy SM. Inherited cerebellar ataxias: 5-year experience of the Irish National Ataxia Clinic. Cerebellum. 2021;20(1):54–61. https://doi.org/10.1007/s12311-020-01180-0.

    Article  CAS  PubMed  Google Scholar 

  36. Fogel BL, Lee H, Deignan JL, Strom SP, Kantarci S, Wang X, Quintero-Rivera F, Vilain E, Grody WW, Perlman S, Geschwind DH, Nelson SF. Exome sequencing in the clinical diagnosis of sporadic or familial cerebellar ataxia. JAMA Neurol. 2014;71(10):1237–46. https://doi.org/10.1001/jamaneurol.2014.1944. Erratum in: JAMA Neurol. 2015 Jan;72(1):128

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pyle A, Smertenko T, Bargiela D, Griffin H, Duff J, Appleton M, Douroudis K, Pfeffer G, Santibanez-Koref M, Eglon G, Yu-Wai-Man P, Ramesh V, Horvath R, Chinnery PF. Exome sequencing in undiagnosed inherited and sporadic ataxias. Brain. 2015;138(Pt 2):276–83. https://doi.org/10.1093/brain/awu348.

    Article  PubMed  Google Scholar 

  38. Vural A, Şimşir G, Tekgül Ş, Koçoğlu C, Akçimen F, Kartal E, Şen NE, Lahut S, Ömür Ö, Saner N, Gül T, Bayraktar E, Palvadeau R, Tunca C, Pirkevi Çetinkaya C, Gündoğdu Eken A, Şahbaz I, Kovancılar Koç M, Öztop Çakmak Ö, et al. The complex genetic landscape of hereditary ataxias in Turkey and implications in clinical practice. Mov Disord. 2021;36(7):1676–88. https://doi.org/10.1002/mds.28518.

    Article  CAS  PubMed  Google Scholar 

  39. Hamza W, Ali Pacha L, Hamadouche T, Muller J, Drouot N, Ferrat F, Makri S, Chaouch M, Tazir M, Koenig M, Benhassine T. Molecular and clinical study of a cohort of 110 Algerian patients with autosomal recessive ataxia. BMC Med Genet. 2015;16:36. https://doi.org/10.1186/s12881-015-0180-3.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Balakrishnan S, Aggarwal S, Muthulakshmi M, Meena AK, Borgohain R, Mridula KR, Yareeda S, Ranganath P, Dalal A. Clinical and molecular spectrum of degenerative cerebellar ataxia: a single centre study. Neurol India. 2022;70(3):934–42. https://doi.org/10.4103/0028-3886.349660.

    Article  PubMed  Google Scholar 

  41. Coutelier M, Coarelli G, Monin ML, Konop J, Davoine CS, Tesson C, Valter R, Anheim M, Behin A, Castelnovo G, Charles P, David A, Ewenczyk C, Fradin M, Goizet C, Hannequin D, Labauge P, Riant F, Sarda P, et al. A panel study on patients with dominant cerebellar ataxia highlights the frequency of channelopathies. Brain. 2017;140(6):1579–94. https://doi.org/10.1093/brain/awx081.

    Article  PubMed  Google Scholar 

  42. Dong HL, Ma Y, Li QF, Du YC, Yang L, Chen S, Wu ZY. Genetic and clinical features of Chinese patients with mitochondrial ataxia identified by targeted next-generation sequencing. CNS Neurosci Ther. 2019;25(1):21–9. https://doi.org/10.1111/cns.12972.

    Article  CAS  PubMed  Google Scholar 

  43. Sanford Kobayashi E, et al. Approaches to long-read sequencing in a clinical setting to improve diagnostic rate. Scientific Reports. 2022;12(1):16945. https://doi.org/10.1038/s41598-022-20113-x.

Download references

Funding

Renata Barreto Tenório received an MSc scholarship from the Brazilian government through CAPES-CNPq.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the manuscript. Project conception was performed by R.B.T. and H.A.G.T. Project organization was performed by R.B.T. and C.C.B.A. Project execution and data acquisition were performed by R.B.T. and K.C.D. Data analysis and interpretation were performed by R.B.T., K.C.D. and C.H.F.C. Statistics was performed by R.B.T. and C.H.F.C. Manuscript writing was performed by R.B.T. Manuscript review and critique were performed by C.H.F.C. and H.A.G.T.

Corresponding author

Correspondence to Renata Barreto Tenorio.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 6 kb)

ESM 2

(DOCX 10 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tenorio, R.B., Camargo, C.H.F., Donis, K.C. et al. Diagnostic Yield of NGS Tests for Hereditary Ataxia: a Systematic Review. Cerebellum (2023). https://doi.org/10.1007/s12311-023-01629-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12311-023-01629-y

Keywords

Navigation