Skip to main content

Advertisement

Log in

A Pilot Study to Develop Paraneoplastic Cerebellar Degeneration Mouse Model

  • ORIGINAL ARTICLE
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Modeling paraneoplastic neurological diseases to understand the immune mechanisms leading to neuronal death is a major challenge given the rarity and terminal access of patients’ autopsies. Here, we present a pilot study aiming at modeling paraneoplastic cerebellar degeneration with Yo autoantibodies (Yo-PCD). Female mice were implanted with an ovarian carcinoma cell line expressing CDR2 and CDR2L, the known antigens recognized by anti-Yo antibodies. To boost the immune response, we also immunized the mice by injecting antigens with diverse adjuvants and immune checkpoint inhibitors. Ataxia and gait instability were assessed in treated mice as well as autoantibody levels, Purkinje cell density, and immune infiltration in the cerebellum. We observed the production of anti-Yo antibodies in the CSF and serum of all immunized mice. Brain immunoreaction varied depending on the site of implantation of the tumor, with subcutaneous administration leading to a massive infiltration of immune cells in the meningeal spaces, choroid plexus, and cerebellar parenchyma. However, we did not observe massive Purkinje cell death nor any motor impairments in any of the experimental groups. Self-sustained neuro-inflammation might require a longer time to build up in our model. Unusual tumor antigen presentation and/or intrinsic, species-specific factors required for pro-inflammatory engagement in the brain may also constitute strong limitations to achieve massive recruitment of antigen-specific T-cells and killing of antigen-expressing neurons in this mouse model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon request.

Abbreviations

Abs:

Antibodies

CDR:

Cerebellar degeneration-related protein

CNS:

Central nervous system

FFPE:

Formalin-fixed paraffin-embedded

IFN:

Interferon

MHC:

Major histocompatibility complex

TNF:

Tumor necrosis factor

PCD:

Paraneoplastic cerebellar degeneration

PND:

Paraneoplastic neurological disease

PNS:

Paraneoplastic neurological syndrome

CFA:

Complete Freund’s adjuvant

PTX:

Pertussis toxin

PBS:

Phosphate-buffered saline

SCID:

Severe combined immunodeficiency

TCR:

T-cell receptor

References

  1. Shams’ili S, et al. Paraneoplastic cerebellar degeneration associated with antineuronal antibodies: analysis of 50 patients. Brain. 2003;126:1409–18.

    Article  PubMed  Google Scholar 

  2. Verschuuren J, et al. Inflammatory infiltrates and complete absence of Purkinje cells in anti-Yo-associated paraneoplastic cerebellar degeneration. Acta Neuropathol. 1996;91:519–25.

    Article  CAS  PubMed  Google Scholar 

  3. Yshii L, Bost C, Liblau R. Immunological bases of paraneoplastic cerebellar degeneration and therapeutic implications. Front Immunol. 2020;11:991.

  4. Tanaka M, Tanaka K, Onodera O, Tsuji S. Trial to establish an animal model of paraneoplastic cerebellar degeneration with anti-Yo antibody. 1. Mouse strains bearing different MHC molecules produce antibodies on immunization with recombinant Yo protein, but do not cause Purkinje cell loss. Clin Neurol Neurosurg. 1995;97:95–100.

    Article  CAS  PubMed  Google Scholar 

  5. Tanaka K, et al. Trial to establish an animal model of paraneoplastic cerebellar degeneration with anti-Yo antibody. 2. Passive transfer of murine mononuclear cells activated with recombinant Yo protein to paraneoplastic cerebellar degeneration lymphocytes in severe combined immunodeficiency mice. Clin Neurol Neurosurg. 1995;97:101–5.

    Article  CAS  PubMed  Google Scholar 

  6. Saiki M, et al. Induction of humoral responses specific for paraneoplastic cerebellar degeneration-associated antigen by whole recombinant yeast immunization. J Autoimmun. 2005;24:203–8.

    Article  CAS  PubMed  Google Scholar 

  7. Sakai K, Shirakawa T, Kitagawa Y, Li Y, Hirose G. Induction of cytotoxic T lymphocytes specific for paraneoplastic cerebellar degeneration-associated antigen in vivo by DNA immunization. J Autoimmun. 2001;17:297–302.

    Article  CAS  PubMed  Google Scholar 

  8. Yshii LM, et al. CTLA4 blockade elicits paraneoplastic neurological disease in a mouse model. Brain. 2016;139:2923–34.

    Article  PubMed  Google Scholar 

  9. Walker LSK, Sansom DM. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol. 2011;11:852–63.

    Article  CAS  PubMed  Google Scholar 

  10. Corradi JP, Yang C, Darnell JC, Dalmau J, Darnell RB. A post-transcriptional regulatory mechanism restricts expression of the paraneoplastic cerebellar degeneration antigen cdr2 to immune privileged tissues. J Neurosci. 1997;17:1406–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eichler TW, et al. CDR2L antibodies: a new player in paraneoplastic cerebellar degeneration. PLoS One. 2013;8(6):e66002.

  12. Kråkenes T, et al. CDR2L is the major Yo antibody target in paraneoplastic cerebellar degeneration. Ann Neurol. 2019;86:316–21.

    Article  PubMed  Google Scholar 

  13. Gebauer C, et al. CD4+ and CD8+ T cells are both needed to induce paraneoplastic neurological disease in a mouse model. OncoImmunology. 2017;6:e1260212.

    Article  PubMed  Google Scholar 

  14. Pignolet BS, Gebauer CM, Liblau RS. Immunopathogenesis of paraneoplastic neurological syndromes associated with anti-Hu antibodies. OncoImmunology. 2013;2:e27384.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Albert ML, et al. Tumor-specific killer cells in paraneoplastic cerebellar degeneration. Nat Med. 1998;4:1321–4.

    Article  CAS  PubMed  Google Scholar 

  16. Small M, et al. Genetic alterations and tumor immune attack in Yo paraneoplastic cerebellar degeneration. Acta Neuropathol. 2018;135:569–79.

    Article  CAS  PubMed  Google Scholar 

  17. Roby KF, et al. Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogenesis. 2000;21:585–91.

    Article  CAS  PubMed  Google Scholar 

  18. Flies DB, Chen L. A simple and rapid vortex method for preparing antigen/adjuvant emulsions for immunization. J Immunol Methods. 2003;276:239–42.

    Article  CAS  PubMed  Google Scholar 

  19. Liu L, and Duff K. A technique for serial collection of cerebrospinal fluid from the cisterna magna in mouse. JoVE. 2008;960. https://doi.org/10.3791/960

  20. Salem ML, Kadima AN, Cole DJ, Gillanders WE. Defining the antigen-specific T-cell response to vaccination and poly(I:C)/TLR3 signaling: evidence of enhanced primary and memory CD8 T-cell responses and antitumor immunity. J Immunother. 2005;28:220–8.

    Article  CAS  PubMed  Google Scholar 

  21. Longhi MP, et al. Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant. J Exp Med. 2009;206:1589–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mookerjee A, Graciotti M, Kandalaft LE. A cancer vaccine with dendritic cells differentiated with GM-CSF and IFNα and pulsed with a squaric acid treated cell lysate improves T cell priming and tumor growth control in a mouse model. Bioimpacts. 2018;8:211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shibaki A, Katz SI. Induction of skewed Th1/Th2 T-cell differentiation via subcutaneous immunization with Freund’s adjuvant. Exp Dermatol. 2002;11:126–34.

    Article  CAS  PubMed  Google Scholar 

  24. Bennett SRM, et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature. 1998;393:478.

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Llopiz D, et al. Combined immunization with adjuvant molecules poly(I:C) and anti-CD40 plus a tumor antigen has potent prophylactic and therapeutic antitumor effects. Cancer Immunol Immunother. 2008;57:19–29.

    Article  CAS  PubMed  Google Scholar 

  26. Hofstetter HH, Shive CL, Forsthuber TG. Pertussis toxin modulates the immune response to neuroantigens injected in incomplete Freund’s adjuvant: induction of Th1 cells and experimental autoimmune encephalomyelitis in the presence of high frequencies of Th2 cells. J Immunol. 2002;169:117–25.

    Article  CAS  PubMed  Google Scholar 

  27. Fujimoto C, et al. Pertussis toxin is superior to TLR ligands in enhancing pathogenic autoimmunity, targeted at a neo-self antigen, by triggering robust expansion of Th1 cells and their cytokine production. J Immunol. 2006;177:6896–903.

    Article  CAS  PubMed  Google Scholar 

  28. Cassan C, et al. Pertussis toxin reduces the number of splenic Foxp3+ regulatory T cells. J Immunol. 2006;177:1552–60.

    Article  CAS  PubMed  Google Scholar 

  29. Millward JM, Caruso M, Campbell IL, Gauldie J, Owens T. IFN-γ-induced chemokines synergize with pertussis toxin to promote T cell entry to the central nervous system. J Immunol. 2007;178:8175–82.

    Article  CAS  PubMed  Google Scholar 

  30. Duraiswamy J, Kaluza KM, Freeman GJ, Coukos G. Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer Res. 2013;73:3591–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Woo S-R, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012;72:917–27.

    Article  CAS  PubMed  Google Scholar 

  32. Joncker NT, Bettini S, Boulet D, Guiraud M, Guerder S. The site of tumor development determines immunogenicity via temporal mobilization of antigen-laden dendritic cells in draining lymph nodes. Eur J Immunol. 2016;46:609–18.

    Article  CAS  PubMed  Google Scholar 

  33. Chiang CL-L, Benencia F, Coukos G. Whole tumor antigen vaccines. Semin Immunol. 2010;22:132–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Scheffer SR, et al. Apoptotic, but not necrotic, tumor cell vaccines induce a potent immune response in vivo. Int J Cancer. 2003;103:205–11.

    Article  CAS  PubMed  Google Scholar 

  35. Chiappinelli KB, Zahnow CA, Ahuja N, Baylin SB. Combining epigenetic and immunotherapy to combat cancer. Cancer Res. 2016;76:1683–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McCaw TR, Randall TD, Arend RC. Overcoming immune suppression with epigenetic modification in ovarian cancer. Transl Res. 2019;204:31–8.

    Article  CAS  PubMed  Google Scholar 

  37. Stone ML, et al. Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proc Natl Acad Sci U S A. 2017;114:E10981–90.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  38. Turner TB, et al. Epigenetic modifiers upregulate MHC II and impede ovarian cancer tumor growth. Oncotarget. 2017;8:44159–70.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Giometto B, et al. Sub-acute cerebellar degeneration with anti-Yo autoantibodies: immunohistochemical analysis of the immune reaction in the central nervous system. Neuropathol Appl Neurobiol. 1997;23:468–74.

    Article  CAS  PubMed  Google Scholar 

  40. Storstein A, Krossnes BK, Vedeler CA. Morphological and immunohistochemical characterization of paraneoplastic cerebellar degeneration associated with Yo antibodies. Acta Neurol Scand. 2009;120:64–7.

    Article  CAS  PubMed  Google Scholar 

  41. Su SB, Silver PB, Zhang M, Chan C-C, Caspi RR. Pertussis toxin inhibits induction of tissue-specific autoimmune disease by disrupting G protein-coupled signals. J Immunol. 2001;167:250–6.

    Article  CAS  PubMed  Google Scholar 

  42. Schläger C, et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature. 2016;530:349–53.

    Article  PubMed  ADS  Google Scholar 

  43. Maria Z, Turner E, Agasing A, Kumar G, Axtell RC. Pertussis toxin inhibits encephalitogenic T-cell infiltration and promotes a B-cell-driven disease during Th17-EAE. Int J Mol Sci. 2021;22:2924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tanaka K, et al. Passive transfer and active immunization with the recombinant leucine-zipper (Yo) protein as an attempt to establish an animal model of paraneoplastic cerebellar degeneration. J Neurol Sci. 1994;127:153–8.

    Article  CAS  PubMed  Google Scholar 

  45. Tanaka M, Tanaka K, Shinozawa K, Idezuka J, Tsuji S. Cytotoxic T cells react with recombinant Yo protein from a patient with paraneoplastic cerebellar degeneration and anti-Yo antibody. J Neurol Sci. 1998;161:88–90.

    Article  CAS  PubMed  Google Scholar 

  46. Carpentier AF, et al. DNA vaccination with HuD inhibits growth of a neuroblastoma in mice. Clin Cancer Res. 1998;4:2819–24.

    CAS  PubMed  Google Scholar 

  47. Pellkofer H, et al. Modelling paraneoplastic CNS disease: T-cells specific for the onconeuronal antigen PNMA1 mediate autoimmune encephalomyelitis in the rat. Brain. 2004;127:1822–30.

    Article  PubMed  Google Scholar 

  48. Schubert M, Panja D, Haugen M, Bramham CR, Vedeler CA. Paraneoplastic CDR2 and CDR2L antibodies affect Purkinje cell calcium homeostasis. Acta Neuropathol. 2014;128:835–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Panja D, Vedeler CA, Schubert M. Paraneoplastic cerebellar degeneration: Yo antibody alters mitochondrial calcium buffering capacity. Neuropathol Appl Neurobiol. 2019;45:141–56.

    Article  CAS  PubMed  Google Scholar 

  50. Greenlee JE, Burns JB, Rose JW, Jaeckle KA, Clawson S. Uptake of systemically administered human anticerebellar antibody by rat Purkinje cells following blood-brain barrier disruption. Acta Neuropathol. 1995;89:341–5.

    Article  CAS  PubMed  Google Scholar 

  51. Graus F, et al. Effect of intraventricular injection of an anti-Purkinje cell antibody (anti-Yo) in a guinea pig model. J Neurol Sci. 1991;106:82–7.

    Article  CAS  PubMed  Google Scholar 

  52. Sellers RS. Translating mouse models: immune variation and efficacy testing. Toxicol Pathol. 2017;45:134–45.

    Article  CAS  PubMed  Google Scholar 

  53. Blachère NE, et al. T cells targeting a neuronal paraneoplastic antigen mediate tumor rejection and trigger CNS autoimmunity with humoral activation. Eur J Immunol. 2014;44:3240–51.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tsou P, Katayama H, Ostrin EJ, Hanash SM. The emerging role of B cells in tumor immunity. Cancer Res. 2016;76:5597–601.

    Article  CAS  PubMed  Google Scholar 

  55. Shen P, Fillatreau S. Antibody-independent functions of B cells: a focus on cytokines. Nat Rev Immunol. 2015;15:441–51.

    Article  CAS  PubMed  Google Scholar 

  56. Small M, et al. Specific genetic alterations and tumor immune contexture characterize ovarian tumors with paraneoplastic degeneration and anti-Yo antibodies. Morphologie. 2017;101:245.

    Article  Google Scholar 

  57. Peter E, et al. Immune and genetic signatures of breast carcinomas triggering anti-Yo–associated paraneoplastic cerebellar degeneration. Neurol-Neuroimmunol Neuroinflammation. 2022;9(5):e20001.

  58. Lv D, et al. The similar expression pattern of MHC class I molecules in human and mouse cerebellar cortex. Neurochem Res. 2014;39:180–6.

    Article  CAS  PubMed  Google Scholar 

  59. Yshii L, et al. IFN-γ is a therapeutic target in paraneoplastic cerebellar degeneration. JCI Insight. 2019;4(7):e127001.

  60. Cebrián C, et al. MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat Commun. 2014;5:3633.

    Article  PubMed  ADS  Google Scholar 

  61. Zhou F. Molecular mechanisms of IFN-γ to up-regulate MHC class I antigen processing and presentation. Int Rev Immunol. 2009;28:239–60.

    Article  CAS  PubMed  Google Scholar 

  62. Galea I, et al. An antigen-specific pathway for CD8 T cells across the blood-brain barrier. J Exp Med. 2007;204:2023–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Murphy CA, Hoek RM, Wiekowski MT, Lira SA, Sedgwick JD. Interactions between hemopoietically derived TNF and central nervous system-resident glial chemokines underlie initiation of autoimmune inflammation in the brain. J Immunol. 2002;169:7054–62.

    Article  CAS  PubMed  Google Scholar 

  64. Guedes RP, et al. A20 deficiency causes spontaneous neuroinflammation in mice. J Neuroinflammation. 2014;11:122.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Catrysse L, Vereecke L, Beyaert R, van Loo G. A20 in inflammation and autoimmunity. Trends Immunol. 2014;35:22–31.

    Article  CAS  PubMed  Google Scholar 

  66. Vereecke L, Beyaert R, van Loo G. Genetic relationships between A20/TNFAIP3, chronic inflammation and autoimmune disease. Biochem Soc Trans. 2011;39:1086–91.

    Article  CAS  PubMed  Google Scholar 

  67. Münz C, Lünemann JD, Getts MT, Miller SD. Antiviral immune responses: triggers of or triggered by autoimmunity? Nat Rev Immunol. 2009;9:246–58.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Steinbach K, et al. Brain-resident memory T cells generated early in life predispose to autoimmune disease in mice. Sci Transl Med. 2019;11(498):eaav5519.

  69. Merkler D, et al. “Viral déjà vu” elicits organ-specific immune disease independent of reactivity to self. J Clin Invest. 2006;116:1254–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

CIQLE microscopy and histology platform at the SFR Lyon Est. ALECS Animal facility at Lyon 1 university. X-ray Irradiator facility at ENS Lyon.

Funding

This study is supported by research grants from Fondation pour la recherche médicale (reference DQ20170336751) and has been developed within the BETPSY project, which is supported by a public grant overseen by the French national research agency (Agence nationale de la recherche, ANR), as part of the second “Investissements d´Avenir” program (reference ANR-18-RHUS-0012). This work was supported by the French National Research Agency within the framework of the LABEX CORTEX ANR-11-LABX-0042.

Author information

Authors and Affiliations

Authors

Contributions

Fabrice Faure: acquisition, analysis, and interpretation of the data and drafting the manuscript for intellectual content and figures.

All authors: critical revision of the manuscript for important intellectual content.

Pr Roland Liblau, Pr Jérôme Honnorat: study concept and design, analysis and interpretation, critical revision of the manuscript for important intellectual content, study supervision.

Corresponding author

Correspondence to Jérôme Honnorat.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faure, F., Yshii, L., Renno, T. et al. A Pilot Study to Develop Paraneoplastic Cerebellar Degeneration Mouse Model. Cerebellum 23, 181–196 (2024). https://doi.org/10.1007/s12311-023-01524-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-023-01524-6

Keywords

Navigation