Skip to main content

Advertisement

Log in

Pallidal Activity in Cervical Dystonia with and Without Head Tremor

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The relationship between two common movement disorders, dystonia and tremor, is controversial. Both deficits have correlates in the network that includes connections between the cerebellum and the basal ganglia. In order to assess the physiological relationship between tremor and dystonia, we measured the activity of 727 pallidal single-neurons during deep brain stimulation surgery in patients with cervical dystonia without head oscillations, cervical dystonia plus jerky oscillations, and cervical dystonia with sinusoidal oscillations. Cluster analyses of spike-train recordings allowed classification of the pallidal activity into burst, pause, and tonic. Burst neurons were more common, and number of spikes within spike and inter-burst intervals was shorter in pure dystonia and jerky oscillation groups compared to the sinusoidal oscillation group. Pause neurons were more common and irregular in pure tremor group compared to pure dystonia and jerky oscillation groups. There was bihemispheric asymmetry in spontaneous firing discharge in pure dystonia and jerky oscillation groups, but not in sinusoidal oscillation group. These results demonstrate that the physiology of pallidal neurons in patients with pure cervical dystonia is similar to those who have cervical dystonia combined with jerky oscillations, but different from those who have cervical dystonia combined with sinusoidal oscillations. These results imply distinct mechanistic underpinnings for different types of head oscillations in cervical dystonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Evatt ML, Freeman A, Factor S. Adult-onset dystonia. Handb Clin Neurol. 2011;100:481–511.

    Article  Google Scholar 

  2. Jinnah HA, Berardelli A, Comella C, Defazio G, DeLong M, Factor S, et al. The focal dystonias: current views and challenges for future research. Mov Disord. 2013;7:926–43.

    Article  Google Scholar 

  3. Elias WJ, Shah BB. Tremor. JAMA. 2014;311:948–54.

    Article  CAS  Google Scholar 

  4. Govert F, Deuschl G. Tremor entities and their classification: an update. Curr Opin Neurol. 2015;28:393–9.

    Article  Google Scholar 

  5. Avanzino L, Ravaschio A, Lagravinese G, Bonassi G, Abbruzzese G, Pelosin E. Adaptation of feedforward movement control is abnormal in patients with cervical dystonia and tremor. Clin Neurophysiol. 2018;129:319–26. https://doi.org/10.1016/j.clinph.2017.08.020.

    Article  PubMed  Google Scholar 

  6. Bares M, Lungu OV, Husarova I, Gescheidt T. Predictive motor timing performance dissociates between early diseases of the cerebellum and Parkinson's disease. Cerebellum. 2010;9:124–35. https://doi.org/10.1007/s12311-009-0133-5.

    Article  PubMed  Google Scholar 

  7. Berman BD, Honce JM, Shelton E, Sillau SH, Nagae LM. Isolated focal dystonia phenotypes are associated with distinct patterns of altered microstructure. Neuroimage Clin. 2018;19:805–12. https://doi.org/10.1016/j.nicl.2018.06.004.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bologna M, Berardelli A. Cerebellum: an explanation for dystonia? Cerebellum Ataxias. 2017;4:6. https://doi.org/10.1186/s40673-017-0064-8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bologna M, Berardelli I, Paparella G, Ferrazzano G, Angelini L, Giustini P, et al. Tremor distribution and the variable clinical presentation of essential tremor. Cerebellum. 2019;18:866–72. https://doi.org/10.1007/s12311-019-01070-0.

    Article  PubMed  Google Scholar 

  10. Corp DT, Joutsa J, Darby RR, Delnooz CCS, van de Warrenburg BPC, Cooke D, et al. Network localization of cervical dystonia based on causal brain lesions. Brain. 2019;142:1660–74. https://doi.org/10.1093/brain/awz112.

    Article  PubMed  Google Scholar 

  11. Delmaire C, Vidailhet M, Elbaz A, Bourdain F, Bleton JP, Sangla S, et al. Structural abnormalities in the cerebellum and sensorimotor circuit in writer's cramp. Neurology. 2007;69:376–80. https://doi.org/10.1212/01.wnl.0000266591.49624.1a.

    Article  CAS  PubMed  Google Scholar 

  12. DeSimone JC, Archer DB, Vaillancourt DE, Wagle SA. Network-level connectivity is a critical feature distinguishing dystonic tremor and essential tremor. Brain. 2019;142:1644–59. https://doi.org/10.1093/brain/awz085.

    Article  PubMed  Google Scholar 

  13. Dyke JP, Cameron E, Hernandez N, Dydak U, Louis ED. Gray matter density loss in essential tremor: a lobule by lobule analysis of the cerebellum. Cerebellum Ataxias. 2017;4:10. https://doi.org/10.1186/s40673-017-0069-3.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Filip P, Gallea C, Lehericy S, Bertasi E, Popa T, Marecek R, et al. Disruption in cerebellar and basal ganglia networks during a visuospatial task in cervical dystonia. Mov Disord. 2017;32:757–68. https://doi.org/10.1002/mds.26930.

    Article  PubMed  Google Scholar 

  15. Filip P, Lungu OV, Bares M. Dystonia and the cerebellum: a new field of interest in movement disorders? Clin Neurophysiol. 2013;124:1269–76. https://doi.org/10.1016/j.clinph.2013.01.003.

    Article  PubMed  Google Scholar 

  16. Filip P, Lungu OV, Shaw DJ, Kasparek T, Bares M. The mechanisms of movement control and time estimation in cervical dystonia patients. Neural Plast. 2013;2013:908741. https://doi.org/10.1155/2013/908741.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Georgescu EL, Georgescu IA, Zahiu CDM, Steopoaie AR, Morozan VP, Pana AS, et al. Oscillatory cortical activity in an animal model of dystonia caused by cerebellar dysfunction. Front Cell Neurosci. 2018;12:390. https://doi.org/10.3389/fncel.2018.00390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lenka A, Bhalsing KS, Panda R, Jhunjhunwala K, Naduthota RM, Saini J, et al. Role of altered cerebello-thalamo-cortical network in the neurobiology of essential tremor. Neuroradiology. 2017;59:157–68. https://doi.org/10.1007/s00234-016-1771-1.

    Article  PubMed  Google Scholar 

  19. Mantel T, Meindl T, Li Y, Jochim A, Gora-Stahlberg G, Kraenbring J, et al. Network-specific resting-state connectivity changes in the premotor-parietal axis in writer’s cramp. Neuroimage Clin. 2018;17:137–44. https://doi.org/10.1016/j.nicl.2017.10.001.

    Article  PubMed  Google Scholar 

  20. Merola A, Dwivedi AK, Shaikh AG, Tareen TK, Da Prat GA, Kauffman MA, et al. Head tremor at disease onset: an ataxic phenotype of cervical dystonia. J Neurol. 2019;266:1844–51. https://doi.org/10.1007/s00415-019-09341-w.

    Article  PubMed  Google Scholar 

  21. Neychev VK, Fan X, Mitev VI, Hess EJ, Jinnah HA. The basal ganglia and cerebellum interact in the expression of dystonic movement. Brain. 2008;131:2499–509. https://doi.org/10.1093/brain/awn168.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pizoli CE, Jinnah HA, Billingsley ML, Hess EJ. Abnormal cerebellar signaling induces dystonia in mice. J Neurosci. 2002;22:7825–33.

    Article  CAS  Google Scholar 

  23. Prudente CN, Hess EJ, Jinnah HA. Dystonia as a network disorder: what is the role of the cerebellum? Neuroscience. 2014;260:23–35. https://doi.org/10.1016/j.neuroscience.2013.11.062.

    Article  CAS  PubMed  Google Scholar 

  24. Prudente CN, Pardo CA, Xiao J, Hanfelt J, Hess EJ, Ledoux MS, et al. Neuropathology of cervical dystonia. Exp Neurol. 2013;241:95–104. https://doi.org/10.1016/j.expneurol.2012.11.019.

    Article  CAS  PubMed  Google Scholar 

  25. Quattrone A, Cerasa A, Messina D, Nicoletti G, Hagberg GE, Lemieux L, et al. Essential head tremor is associated with cerebellar vermis atrophy: a volumetric and voxel-based morphometry MR imaging study. AJNR Am J Neuroradiol. 2008;29:1692–7. https://doi.org/10.3174/ajnr.A1190.

    Article  CAS  PubMed  Google Scholar 

  26. Sedov A, Popov V, Shabalov V, Raeva S, Jinnah HA, Shaikh AG. Physiology of midbrain head movement neurons in cervical dystonia. Mov Disord. 2017;32:904–12. https://doi.org/10.1002/mds.26948.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sedov A, Usova S, Semenova U, Gamaleya A, Tomskiy A, Crawford JD, et al. The role of pallidum in the neural integrator model of cervical dystonia. Neurobiol Dis. 2019;125:45–54. https://doi.org/10.1016/j.nbd.2019.01.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shaikh AG, Zee DS, Crawford JD, Jinnah HA. Cervical dystonia: a neural integrator disorder. Brain. 2016;139:2590–9. https://doi.org/10.1093/brain/aww141.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tewari A, Fremont R, Khodakhah K. It's not just the basal ganglia: cerebellum as a target for dystonia therapeutics. Mov Disord. 2017;32:1537–45. https://doi.org/10.1002/mds.27123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang L, Lei D, Suo X, Li N, Lu Z, Li J, et al. Resting-state fMRI study on drug-naive patients of essential tremor with and without head tremor. Sci Rep. 2018;8:10580. https://doi.org/10.1038/s41598-018-28778-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fahn S. The varied clinical expressions of dystonia. Neurol Clin. 1984;2:541–54.

    Article  CAS  Google Scholar 

  32. Chan J, Brin MF, Fahn S. Idiopathic cervical dystonia: clinical characteristics. Mov Disord. 1991;6:119–26.

    Article  CAS  Google Scholar 

  33. Jankovic J, Leader S, Warner D, Schwartz K. Cervical dystonia: clinical findings and associated movement disorders. Neurology. 1991;41:1088–91.

    Article  CAS  Google Scholar 

  34. Deuschl G, Heinen F, Guschlbauer B, Schneider S, Glocker FX, Lucking CH. Hand tremor in patients with spasmodic torticollis. Mov Disord. 1997;12:547–52.

    Article  CAS  Google Scholar 

  35. Pal PK, Samii A, Schulzer M, Mak E, Tsui JK. Head tremor in cervical dystonia. Can J Neurol Sci. 2000;27:137–42.

    Article  CAS  Google Scholar 

  36. Schweinfurth JM, Billante M, Courey MS. Risk factors and demographics in patients with spasmodic dysphonia. Laryngoscope. 2002;112:220–3.

    Article  Google Scholar 

  37. Godeiro-Junior C, Felicio AC, Aguiar PC, Borges V, Silva SM, Ferraz HB. Head tremor in patients with cervical dystonia: different outcome? Arq Neuropsiquiatr. 2008;66:805–8.

    Article  Google Scholar 

  38. Hedera P, Phibbs FT, Fang JY, Cooper MK, Charles PD, Davis TL. Clustering of dystonia in some pedigrees with autosomal dominant essential tremor suggests the existence of a distinct subtype of essential tremor. BMC Neurol. 2010;10:66.

    Article  Google Scholar 

  39. Shatunov A, Sambuughin N, Jankovic J, Elble R, Lee HS, Singleton AB, et al. Genomewide scans in North American families reveal genetic linkage of essential tremor to a region on chromosome 6p23. Brain. 2006;129:2318–31.

    Article  Google Scholar 

  40. Rana AQ, Kabir A, Dogu O, Patel A, Khondker S. Prevalence of blepharospasm and apraxia of eyelid opening in patients with parkinsonism, cervical dystonia and essential tremor. Eur Neurol. 2012;68:318–21.

    Article  Google Scholar 

  41. Louis ED, Hernandez N, Alcalay RN, Tirri DJ, Ottman R, Clark LN. Prevalence and features of unreported dystonia in a family study of "pure" essential tremor. Parkinsonism Relat Disord. 2013;19:359–62.

    Article  Google Scholar 

  42. Elble RJ. What is essential tremor? Curr Neurol Neurosci Rep. 2013;13:353.

    Article  Google Scholar 

  43. Quinn NP, Schneider SA, Schwingenschuh P, Bhatia KP. Tremor - some controversial aspects. Mov Disord. 2011;26:18–23. https://doi.org/10.1002/mds.23289.

    Article  PubMed  Google Scholar 

  44. Vitek JL, Chockkan V, Zhang JY, Kaneoke Y, Evatt M, DeLong MR, et al. Neuronal activity in the basal ganglia in patients with generalized dystonia and hemiballismus. Ann Neurol. 1999;46:22–35.

    Article  CAS  Google Scholar 

  45. Vitek JL, Delong MR, Starr PA, Hariz MI, Metman LV. Intraoperative neurophysiology in DBS for dystonia. Mov Disord. 2011;26(Suppl 1):S31–6. https://doi.org/10.1002/mds.23619.

    Article  PubMed  Google Scholar 

  46. Myrov V, Sedov A, Belova E. Neural activity clusterization for estimation of firing pattern. J Neurosci Methods. 2019;311:164–9. https://doi.org/10.1016/j.jneumeth.2018.10.017.

    Article  PubMed  Google Scholar 

  47. Cotterill E, Charlesworth P, Thomas CW, Paulsen O, Eglen SJ. A comparison of computational methods for detecting bursts in neuronal spike trains and their application to human stem cell-derived neuronal networks. J Neurophysiol. 2016;116:306–21. https://doi.org/10.1152/jn.00093.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Legendy CR, Salcman M. Bursts and recurrences of bursts in the spike trains of spontaneously active striate cortex neurons. J Neurophysiol. 1985;53:926–39. https://doi.org/10.1152/jn.1985.53.4.926.

    Article  CAS  PubMed  Google Scholar 

  49. Moll CK, Galindo-Leon E, Sharott A, Gulberti A, Buhmann C, Koeppen JA, et al. Asymmetric pallidal neuronal activity in patients with cervical dystonia. Front Syst Neurosci. 2014;8:15. https://doi.org/10.3389/fnsys.2014.00015.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lee JR, Kiss ZH. Interhemispheric difference of pallidal local field potential activity in cervical dystonia. J Neurol Neurosurg Psychiatry. 2014;85:306–10. https://doi.org/10.1136/jnnp-2013-305476.

    Article  PubMed  Google Scholar 

  51. Shaikh AG, Wong AL, Zee DS, Jinnah HA. Keeping your head on target. J Neurosci. 2013;33:11281–95. https://doi.org/10.1523/JNEUROSCI.3415-12.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sani S, Ostrem JL, Shimamoto S, Levesque N, Starr PA. Single unit "pauser" characteristics of the globus pallidus pars externa distinguish primary dystonia from secondary dystonia and Parkinson's disease. Exp Neurol. 2009;216:295–9. https://doi.org/10.1016/j.expneurol.2008.12.006.

    Article  PubMed  Google Scholar 

  53. Starr PA, Rau GM, Davis V, Marks WJ Jr, Ostrem JL, Simmons D, et al. Spontaneous pallidal neuronal activity in human dystonia: comparison with Parkinson's disease and normal macaque. J Neurophysiol. 2005;93:3165–76. https://doi.org/10.1152/jn.00971.2004.

    Article  PubMed  Google Scholar 

  54. Vitek JL. Pathophysiology of dystonia: a neuronal model. Mov Disord. 2002;17(Suppl 3):S49–62.

    Article  Google Scholar 

Download references

Funding

The study was funded by the Russian Science Foundation project 18-15-00009 (Sedov) for data collection and analysis; The Russian Foundation for Basic Research project 18-315-00202 and 20-015-00438 (Semenova) for estimation of head oscillation; The Career Development Grant from the American Academy of Neurology (Shaikh); George C. Cotzias Memorial Fellowship from American Parkinson’s Disease Association (Shaikh), Network Models in Dystonia grant from the Dystonia Medical Research Foundation (Shaikh), philanthropic funds to the department of neurology at University Hospitals (Shaikh). NIH U54 TR001456 (Jinnah).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aasef G. Shaikh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedov, A., Usova, S., Semenova, U. et al. Pallidal Activity in Cervical Dystonia with and Without Head Tremor. Cerebellum 19, 409–418 (2020). https://doi.org/10.1007/s12311-020-01119-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-020-01119-5

Keywords

Navigation