Skip to main content
Log in

Enhancement of Autophagy and Solubilization of Ataxin-2 Alleviate Apoptosis in Spinocerebellar Ataxia Type 2 Patient Cells

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxia type 2 (SCA2), a rare polyglutamine neurodegenerative disorder caused by a CAG repeat expansion in the ataxin-2 gene, exhibits common cellular phenotypes with other neurodegenerative disorders, including oxidative stress and mitochondrial dysfunction. Here, we show that SCA2 patient cells exhibit higher levels of caspase-8- and caspase-9-mediated apoptotic activation than control cells, cellular phenotypes that we find to be exacerbated by reactive oxygen species (ROS) and inhibition of autophagy. We also suggest that oligomerization of mutant ataxin-2 protein is likely to be the cause of the observed cellular phenotypes by causing inhibition of autophagy and by inducing ROS generation. Finally, we show that removal of ataxin-2 oligomers, either by increasing autophagic clearance or by oligomer dissolution, appears to alleviate the cellular phenotypes. Our results suggest that oligomerized ataxin-2 and oxidative stress affect autophagic clearance in SCA2 cells, contributing to the pathophysiology, and that activation of autophagy or clearance of oligomers may prove to be effective therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Takeuchi T, Nagai Y. Protein misfolding and aggregation as a therapeutic target for polyglutamine diseases. Brain Sci. 2017;7 Available from: http://www.ncbi.nlm.nih.gov/pubmed/29019918. Accessed 30 Sep 2019.

  2. Sánchez I, Mahlke C, Yuan J. Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature. 2003;421:373–9.

    PubMed  Google Scholar 

  3. Durr A. Autosomal dominant cerebellar ataxias: Polyglutamine expansions and beyond. Lancet Neurol. 2010;9:885–94. https://doi.org/10.1016/S1474-4422(10)70183-6.

    Article  CAS  PubMed  Google Scholar 

  4. Todd TW, Lim J. Aggregation formation in the polyglutamine diseases: protection at a cost? Mol Cells. 2013;36:185–94 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23794019. Accessed 30 Sep 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet. 2004;36:585–95.

    CAS  PubMed  Google Scholar 

  6. Ravikumar B, Sarkar S, Rubinsztein DC. Clearance of mutant aggregate-prone proteins by autophagy. Methods Mol Biol Humana Press. 2008;445:195–211.

    CAS  Google Scholar 

  7. Nixon RA, Yang D-S, Lee J-H. Neurodegenerative lysosomal disorders: a continuum from development to late age. Autophagy. 2008;4:590–9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/18497567. Accessed 11 Aug 2015.

    CAS  PubMed  Google Scholar 

  8. Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med. 2013;19:983–97 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23921753. Accessed 30 Sep 2019.

    CAS  PubMed  Google Scholar 

  9. Starkov AA. The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci. 2008;1147:37–52 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2869479&tool=pmcentrez&rendertype=abstract. Accessed 9 Apr 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wong E, Cuervo AM. Autophagy gone awry in neurodegenerative diseases. Nat Neurosci. 2010;13:805–11 Available from: http://www.ncbi.nlm.nih.gov/pubmed/20581817. Accessed 30 Sep 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kiriyama Y, Nochi H. The function of autophagy in neurodegenerative diseases. Int J Mol Sci, 16. 2015:26797–812 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26569220. Accessed 30 Sep 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Johri A, Beal MF. Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther. 2012;342:619–30 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22700435. Accessed 30 Sep 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cornelius N, Wardman JH, Hargreaves IP, Neergheen V, Bie AS, Tümer Z, et al. Evidence of oxidative stress and mitochondrial dysfunction in spinocerebellar ataxia type 2 (SCA2) patient fibroblasts: effect of coenzyme Q10 supplementation on these parameters. Mitochondrion. 2017;34.

    CAS  PubMed  Google Scholar 

  14. Kaminskyy VO, Zhivotovsky B. Free radicals in cross talk between autophagy and apoptosis. Antioxid Redox Signal. 2014;21:86–102 Available from: http://www.ncbi.nlm.nih.gov/pubmed/24359220. Accessed 6 Jul 2015.

    CAS  PubMed  Google Scholar 

  15. Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN, Radi E. Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci. Elsevier B.V.; 2012;322:254–62. Available from: https://doi.org/10.1016/j.jns.2012.05.030. Accessed 6 Jul 2015

    CAS  PubMed  Google Scholar 

  16. Inoue H, Tsukita K, Iwasato T, Suzuki Y, Tomioka M, Tateno M, et al. The crucial role of caspase-9 in the disease progression of a transgenic ALS mouse model. EMBO J. 2003;22:6665–74 Available from: http://www.ncbi.nlm.nih.gov/pubmed/14657037.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mattson MP. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol. 2000;1:120–9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/11253364.. Accessed 30 Sep 2019.

    CAS  PubMed  Google Scholar 

  18. Halbach MV, Stehning T, Damrath E, Jendrach M, Şen NE, Başak AN, et al. Both ubiquitin ligases FBXW8 and PARK2 are sequestrated into insolubility by ATXN2 PolyQ expansions, but only FBXW8 expression is dysregulated. PLoS One. 2015;10:e0121089 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25790475. Accessed 30 Sep 2019.

    PubMed  PubMed Central  Google Scholar 

  19. Paul S, Dansithong W, Figueroa KP, Scoles DR, Pulst SM. Staufen1 links RNA stress granules and autophagy in a model of neurodegeneration. Nat Commun. 2018;9.

  20. Bird TD. Hereditary ataxia overview. GeneReviews. 2015.

  21. David DC. Aging and the aggregating proteome. Front Genet. 2012.

  22. Fittschen M, Lastres-Becker I, Halbach MV, Damrath E, Gispert S, Azizov M, et al. Genetic ablation of ataxin-2 increases several global translation factors in their transcript abundance but decreases translation rate. Neurogenetics. 2015;16:181–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lastres-Becker I, Nonis D, Eich F, Klinkenberg M, Gorospe M, Kötter P, et al. Mammalian ataxin-2 modulates translation control at the pre-initiation complex via PI3K/mTOR and is induced by starvation. Biochim Biophys Acta. 2016;1862:1558–69 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27240544. Accessed 30 Sep 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Satterfield TF, Pallanck LJ. Ataxin-2 and its Drosophila homolog, ATX2, physically assemble with polyribosomes. Hum.Mol.Genet. 2006:2523–32.

    CAS  PubMed  Google Scholar 

  25. Kasumu A, Bezprozvanny I. Deranged calcium signaling in Purkinje cells and pathogenesis in spinocerebellar ataxia 2 (SCA2) and other ataxias. Cerebellum. 2012;11:630–9 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3257360&tool=pmcentrez&rendertype=abstract. Acessed 9 Apr 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu J, Tang TS, Tu H, Nelson O, Herndon E, Huynh DP, et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci. 2009;29:9148–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Nonhoff U, Ralser M, Welzel F, Piccini I, Balzereit D, Yaspo M-L, et al. Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. Mol Biol Cell. 2007;18:1385–96 Available from: http://www.ncbi.nlm.nih.gov/pubmed/17392519. Accessed 30 Sep 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang X, Chen XJ. A cytosolic network suppressing mitochondria-mediated proteostatic stress and cell death. Nature. 2015;524:481–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Seidel G, Meierhofer D, Şen NE, Guenther A, Krobitsch S, Auburger G. Quantitative global proteomics of yeast PBP1 deletion mutants and their stress responses identifies glucose metabolism, mitochondrial, and stress granule changes. J Proteome Res. 2017;16:504–15.

    CAS  PubMed  Google Scholar 

  30. Meierhofer D, Halbach M, Şen NE, Gispert S, Auburger G. Ataxin-2 (Atxn2)-knock-out mice show branched chain amino acids and fatty acids pathway alterations. Mol Cell Proteomics. 2016;15:1728–39 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26850065. Accessed 30 Sep 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kato M, Yang Y-S, Sutter BM, Wang Y, McKnight SL, Tu BP. Redox state controls phase separation of the yeast ataxin-2 protein via reversible oxidation of its methionine-rich low-complexity domain. Cell. 2019;177:711–721.e8 Available from: http://www.ncbi.nlm.nih.gov/pubmed/30982603. Accessed 4 Oct 2019.

    CAS  PubMed  Google Scholar 

  32. Orr HT, Zoghbi HY. Trinucleotide repeat disorders. Annu. Rev. Neurosci. 2007:575–621.

    CAS  PubMed  Google Scholar 

  33. Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet. 1996:285–91.

    CAS  PubMed  Google Scholar 

  34. Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet. 1996:269–76.

    CAS  PubMed  Google Scholar 

  35. Lastres-Becker I, Brodesser S, Lütjohann D, Azizov M, Buchmann J, Hintermann E, et al. Insulin receptor and lipid metabolism pathology in ataxin-2 knock-out mice. Hum Mol Genet. 2008;17:1465–81 Available from: http://www.ncbi.nlm.nih.gov/pubmed/18250099. Accessed 30 Sep 2019.

    CAS  PubMed  Google Scholar 

  36. Pfeffer M, Gispert S, Auburger G, Wicht H, Korf H-W. Impact of Ataxin-2 knock out on circadian locomotor behavior and PER immunoreaction in the SCN of mice. Chronobiol Int. 2017;34:129–37 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27791392. Accessed 30 Sep 2019.

    CAS  PubMed  Google Scholar 

  37. Gardiner SL, Milanese C, Boogaard MW, Buijsen RAM, Hogenboom M, Roos RAC, et al. Bioenergetics in fibroblasts of patients with Huntington disease are associated with age at onset. Neurol Genet. 2018;4:e275 Available from: http://www.ncbi.nlm.nih.gov/pubmed/30338295. Accessed 30 Sep 2019.

    PubMed  PubMed Central  Google Scholar 

  38. Fernandez-Estevez MA, Casarejos MJ, Sendon JL, Caldentey JG, Ruiz C, Gomez A, et al. Trehalose reverses cell malfunction in fibroblasts from normal and Huntington’s disease patients caused by proteosome inhibition. PLoS One. 2014;9.

    PubMed  PubMed Central  Google Scholar 

  39. Schmitz-Hubsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006:1717–20.

    CAS  PubMed  Google Scholar 

  40. Nielsen TT, Svenstrup K, Budtz-Jørgensen E, Eiberg H, Hasholt L, Nielsen JE. ATXN2 with intermediate-length CAG/CAA repeats does not seem to be a risk factor in hereditary spastic paraplegia. J Neurol Sci. 2012;321:100–2.

    CAS  PubMed  Google Scholar 

  41. Huynh DP, Yang HT, Vakharia H, Nguyen D, Pulst SM. Expansion of the polyQ repeat in ataxin-2 alters its Golgi localization, disrupts the Golgi complex and causes cell death. Hum Mol Genet. 2003:1485–96.

    CAS  PubMed  Google Scholar 

  42. Hart MP, Gitler AD. ALS-associated ataxin 2 polyQ expansions enhance stress-induced caspase 3 activation and increase TDP-43 pathological modifications. J Neurosci. 2012;32:9133–42 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22764223. Accessed 1 Oct 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Krajewski S, Krajewska M, Ellerby LM, Welsh K, Xie Z, Deveraux QL, et al. Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc Natl Acad Sci U S A. 1999;96:5752–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281:1309–12.

    CAS  PubMed  Google Scholar 

  45. Laussmann MA, Passante E, Düssmann H, Rauen JA, Würstle ML, Delgado ME, et al. Proteasome inhibition can induce an autophagy-dependent apical activation of caspase-8. Cell Death Differ. 2011;18:1584–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pan J-A, Ullman E, Dou Z, Zong W-X. Inhibition of protein degradation induces apoptosis through a microtubule-associated protein 1 light chain 3-mediated activation of caspase-8 at intracellular membranes. Mol Cell Biol. 2011;31:3158–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Almaguer-Mederos LE, Almaguer-Gotay D, Aguilera-Rodríguez R, González-Zaldívar Y, Cuello-Almarales D, Laffita-Mesa J, et al. Association of glutathione S-transferase omega polymorphism and spinocerebellar ataxia type 2. J Neurol Sci. 2017;372:324–8.

    CAS  PubMed  Google Scholar 

  48. Myeku N, Figueiredo-Pereira ME. Dynamics of the degradation of ubiquitinated proteins by proteasomes and autophagy: association with sequestosome 1/p62. J Biol Chem. 2011;286:22426–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Redmann M, Benavides GA, Berryhill TF, Wani WY, Ouyang X, Johnson MS, et al. Inhibition of autophagy with bafilomycin and chloroquine decreases mitochondrial quality and bioenergetic function in primary neurons. Redox Biol. 2017;11:73–81.

    CAS  PubMed  Google Scholar 

  50. Yang YS, Kato M, Wu X, Litsios A, Sutter BM, Wang Y, et al. Yeast ataxin-2 forms an intracellular condensate required for the inhibition of TORC1 signaling during respiratory growth. Cell. 2019;177:697–710.e17.

    CAS  PubMed  Google Scholar 

  51. DeMille D, Badal BD, Evans JB, Mathis AD, Anderson JF, Grose JH. PAS kinase is activated by direct SNF1-dependent phosphorylation and mediates inhibition of TORC1 through the phosphorylation and activation of Pbp1. Mol Biol Cell. 2015;26:569–82.

    PubMed  PubMed Central  Google Scholar 

  52. Floto RA, Sarkar S, Perlstein EO, Kampmann B, Schreiber SL, Rubinsztein DC. Small molecule enhancers of rapamycin-induced TOR inhibition promote autophagy, reduce toxicity in Huntington’s disease models and enhance killing of mycobacteria by macrophages. Autophagy. 2007;3:620–2 Available from: http://www.ncbi.nlm.nih.gov/pubmed/17786022. Accessed 1 Oct 2019.

    CAS  PubMed  Google Scholar 

  53. Zhang X, Chen S, Song L, Tang Y, Shen Y, Jia L, et al. MTOR-independent, autophagic enhancer trehalose prolongs motor neuron survival and ameliorates the autophagic flux defect in a mouse model of amyotrophic lateral sclerosis. Autophagy. 2014;10:588–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein. J Biol Chem. 2007;282:5641–52.

    CAS  PubMed  Google Scholar 

  55. Sarkar S, Ravikumar B, Floto RA, Rubinsztein DC. Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ. 2009:46–56.

    Google Scholar 

  56. Orr HT. Hereditary ataxia. An unfolded protein. Lancet (London, England). 2001;358(Suppl):S35 Available from: http://www.ncbi.nlm.nih.gov/pubmed/11784584. Accessed 1 Oct 2019.

    Google Scholar 

  57. Balch WE, Morimoto RI, Dillin A, Kelly JW. Adapting proteostasis for disease intervention. Science. 2008;319:916–9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/18276881. Accessed 1 Oct 2019.

    CAS  PubMed  Google Scholar 

  58. Zhang X, Smith DL, Meriin AB, Engemann S, Russel DE, Roark M, et al. A potent small molecule inhibits polyglutamine aggregation in Huntington’s disease neurons and suppresses neurodegeneration in vivo. Proc Natl Acad Sci U S A. 2005;102:892–7 Available from: http://www.ncbi.nlm.nih.gov/pubmed/15642944. Accessed 2 Oct 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Frid P, Anisimov SV, Popovic N. Congo red and protein aggregation in neurodegenerative diseases. Brain Res Rev. 2007;53:135–60 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16959325. Accessed 15 Oct 2019.

    CAS  PubMed  Google Scholar 

  60. Pulst S-M, Huynh DP, Figueroa K, Hoang N. Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nat Genet. 2000;26:44–50 Available from: http://www.ncbi.nlm.nih.gov/pubmed/10973246. Accessed 11 Feb 2017.

    PubMed  Google Scholar 

  61. Casarejos MJ, Solano RM, Gómez A, Perucho J, de Yébenes JG, Mena MA. The accumulation of neurotoxic proteins, induced by proteasome inhibition, is reverted by trehalose, an enhancer of autophagy, in human neuroblastoma cells. Neurochem Int. 2011;58:512–20 Available from: http://www.ncbi.nlm.nih.gov/pubmed/21232572. Accessed 1 Oct 2019.

    CAS  PubMed  Google Scholar 

  62. Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA, et al. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother. 2015;74:101–10 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26349970. Accessed 1 Oct 2019.

    CAS  PubMed  Google Scholar 

  63. Soto C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci. 2003;4:49–60 Available from: http://www.ncbi.nlm.nih.gov/pubmed/12511861. Accessed 1 Oct 2019.

    CAS  PubMed  Google Scholar 

  64. Beal MF. Mitochondria, free radicals, and neurodegeneration. Curr Opin Neurobiol. 1996;6:661–6 Available from: http://www.ncbi.nlm.nih.gov/pubmed/8937831. Accessed 5 May 2015.

    CAS  PubMed  Google Scholar 

  65. Ding Q, Keller JN. Proteasome inhibition in oxidative stress neurotoxicity: implications for heat shock proteins. J Neurochem. 2001;77:1010–7 Available from: http://www.ncbi.nlm.nih.gov/pubmed/11359866. Accessed 1 Oct 2019.

    CAS  PubMed  Google Scholar 

  66. Bartolomé A, García-Aguilar A, Asahara S-I, Kido Y, Guillén C, Pajvani UB, et al. MTORC1 regulates both general autophagy and mitophagy induction after oxidative phosphorylation uncoupling. Mol Cell Biol. 2017;37 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28894028. Accessed 1 Oct 2019.

Download references

Funding

The authors wish to acknowledge the funding contributions of the Research Board at Rigshospitalet and the Novo Nordisk Foundation.

Author information

Authors and Affiliations

Authors

Contributions

JHW, EEH, AGM, JEN, and TTN designed the experiments. JHW and EEH performed the experiments and analyzed the corresponding results. JHW wrote the paper with editing and consultation from EEH, AGM, JEN, and TTN.

Corresponding author

Correspondence to Troels Tolstrup Nielsen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wardman, J.H., Henriksen, E.E., Marthaler, A.G. et al. Enhancement of Autophagy and Solubilization of Ataxin-2 Alleviate Apoptosis in Spinocerebellar Ataxia Type 2 Patient Cells. Cerebellum 19, 165–181 (2020). https://doi.org/10.1007/s12311-019-01092-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-019-01092-8

Keywords

Navigation