Skip to main content
Log in

Regulatory Control of Microglial Phagocytosis by Estradiol and Prostaglandin E2 in the Developing Rat Cerebellum

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Microglia are essential to sculpting the developing brain, and they achieve this in part through the process of phagocytosis which is regulated by microenvironmental signals associated with cell death and synaptic connectivity. In the rat cerebellum, microglial phagocytosis reaches its highest activity during the third postnatal week of development but the factors regulating this activity are unknown. A signaling pathway, involving prostaglandin E2 (PGE2) stimulation of the estrogen synthetic enzyme aromatase, peaks during the 2nd postnatal week and is a critical regulator of Purkinje cell maturation. We explored the relationship between the PGE2-estradiol pathway and microglia in the maturing cerebellum. Toward that end, we treated developing rat pups with pharmacological inhibitors of estradiol and PGE2 synthesis and then stained microglia with the universal marker Iba1 and quantified microglia engaged in phagocytosis as well as phagocytic cups in the vermis and cerebellar hemispheres. Inhibition of aromatase reduced the number of phagocytic cups in the vermis, but not in the cerebellar hemisphere at postnatal day 17. Similar results were found after treatment with nimesulide and indomethacin, inhibitors of the PGE2-producing enzymes cyclooxygenase 1 and 2. In contrast, treatment with estradiol or PGE2 had little effect on microglial phagocytosis in the developing cerebellum. Thus, endogenous estrogens and prostaglandins upregulate the phagocytic activity of microglia during a select window of postnatal cerebellar development, but exogenous treatment with these same signaling molecules does not further increase the already high levels of phagocytosis. This may be due to an upper threshold or evidence of resistance to exogenous perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hong S, Stevens B. Microglia: phagocytosing to clear, sculpt, and eliminate. Dev Cell. 2016;38(2):126–8.

    Article  CAS  PubMed  Google Scholar 

  2. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74(4):691–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Marin-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M. Microglia promote the death of developing Purkinje cells. Neuron. 2004;41(4):535–47.

    Article  CAS  PubMed  Google Scholar 

  4. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333(6048):1456–8.

    Article  CAS  PubMed  Google Scholar 

  5. Perez-Pouchoulen M, VanRyzin JW, McCarthy MM. Morphological and phagocytic profile of microglia in the developing rat cerebellum. eNeuro. 2015;2(4).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kaur C, Sivakumar V, Zou Z, Ling EA. Microglia-derived proinflammatory cytokines tumor necrosis factor-alpha and interleukin-1beta induce Purkinje neuronal apoptosis via their receptors in hypoxic neonatal rat brain. Brain Struct Funct. 2014;219(1):151–70.

    Article  CAS  PubMed  Google Scholar 

  7. Lenz KM, Nugent BM, Haliyur R, McCarthy MM. Microglia are essential to masculinization of brain and behavior. J Neurosci. 2013;33(7):2761–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weinhard L, di Bartolomei G, Bolasco G, Machado P, Schieber NL, Neniskyte U, et al. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat Commun. 2018;9(1):1228.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Swanson JA. Shaping cups into phagosomes and macropinosomes. Nat Rev Mol Cell Biol. 2008;9(8):639–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schwarz JM, Sholar PW, Bilbo SD. Sex differences in microglial colonization of the developing rat brain. J Neurochem. 2012;120(6):948–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu CH, Wen CY, Shieh JY, Ling EA. A quantitative and morphometric study of the transformation of amoeboid microglia into ramified microglia in the developing corpus callosum in rats. J Anat. 1992;181(Pt 3):423–30.

    PubMed  PubMed Central  Google Scholar 

  12. Gomez-Gonzalez B, Escobar A. Prenatal stress alters microglial development and distribution in postnatal rat brain. Acta Neuropathol. 2010;119(3):303–15.

    Article  PubMed  Google Scholar 

  13. Sierra A, Encinas JM, Deudero JJ, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell. 2010;7(4):483–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ferrer-Martin RM, Martin-Oliva D, Sierra A, Carrasco MC, Martin-Estebane M, Calvente R, et al. Microglial cells in organotypic cultures of developing and adult mouse retina and their relationship with cell death. Exp Eye Res. 2014;121:42–57.

    Article  CAS  PubMed  Google Scholar 

  15. Abiega O, Beccari S, Diaz-Aparicio I, Nadjar A, Laye S, Leyrolle Q, et al. Neuronal hyperactivity disturbs ATP microgradients, impairs microglial motility, and reduces phagocytic receptor expression triggering apoptosis/microglial phagocytosis uncoupling. PLoS Biol. 2016;14(5):e1002466.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Nelson LH, Warden S, Lenz KM. Sex differences in microglial phagocytosis in the neonatal hippocampus. Brain Behav Immun. 2017;64:11–22.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hong S, Dissing-Olesen L, Stevens B. New insights on the role of microglia in synaptic pruning in health and disease. Curr Opin Neurobiol. 2016;36:128–34.

    Article  CAS  PubMed  Google Scholar 

  18. Tremblay ME, Lowery RL, Majewska AK. Microglial interactions with synapses are modulated by visual experience. PLoS Biol. 2010;8(11):e1000527.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Grabert K, Michoel T, Karavolos MH, Clohisey S, Baillie JK, Stevens MP, et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat Neurosci. 2016;19(3):504–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dean SL, Wright CL, Hoffman JF, Wang M, Alger BE, McCarthy MM. Prostaglandin E2 stimulates estradiol synthesis in the cerebellum postnatally with associated effects on Purkinje neuron dendritic arbor and electrophysiological properties. Endocrinology. 2012;153(11):5415–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Todd BJ, Schwarz JM, McCarthy MM. Prostaglandin-E2: a point of divergence in estradiol-mediated sexual differentiation. Horm Behav. 2005;48(5):512–21.

    Article  CAS  PubMed  Google Scholar 

  22. Amateau SK, McCarthy MM. A novel mechanism of dendritic spine plasticity involving estradiol induction of prostaglandin-E2. J Neurosci. 2002;22(19):8586–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McCarthy MM. Estradiol and the developing brain. Physiol Rev. 2008;88(1):91–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sakamoto H, Mezaki Y, Shikimi H, Ukena K, Tsutsui K. Dendritic growth and spine formation in response to estrogen in the developing Purkinje cell. Endocrinology. 2003;144(10):4466–77.

    Article  CAS  PubMed  Google Scholar 

  25. Sasahara K, Shikimi H, Haraguchi S, Sakamoto H, Honda S, Harada N, et al. Mode of action and functional significance of estrogen-inducing dendritic growth, spinogenesis, and synaptogenesis in the developing Purkinje cell. J Neurosci. 2007;27(28):7408–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bowers JM, Waddell J, McCarthy MM. A developmental sex difference in hippocampal neurogenesis is mediated by endogenous oestradiol. Biol Sex Differ. 2010;1(1):8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Burks SR, Wright CL, McCarthy MM. Exploration of prostanoid receptor subtype regulating estradiol and prostaglandin E2 induction of spinophilin in developing preoptic area neurons. Neuroscience. 2007;146(3):1117–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hoffman JF, Wright CL, McCarthy MM. A critical period in Purkinje cell development is mediated by local estradiol synthesis, disrupted by inflammation, and has enduring consequences only for males. J Neurosci. 2016;36(39):10039–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dean SL, Knutson JF, Krebs-Kraft DL, McCarthy MM. Prostaglandin E2 is an endogenous modulator of cerebellar development and complex behavior during a sensitive postnatal period. Eur J Neurosci. 2012;35(8):1218–29.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Amateau SK, McCarthy MM. Induction of PGE2 by estradiol mediates developmental masculinization of sex behavior. Nat Neurosci. 2004;7(6):643–50.

    Article  CAS  PubMed  Google Scholar 

  31. Villa A, Vegeto E, Poletti A, Maggi A. Estrogens, neuroinflammation, and neurodegeneration. Endocr Rev. 2016;37(4):372–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rivest S. Interactions between the immune and neuroendocrine systems. Prog Brain Res. 2010;181:43–53.

    Article  CAS  PubMed  Google Scholar 

  33. Woodling NS, Andreasson KI. Untangling the web: toxic and protective effects of neuroinflammation and PGE2 signaling in Alzheimer’s disease. ACS Chem Neurosci. 2016;7(4):454–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sarvari M, Kallo I, Hrabovszky E, Solymosi N, Liposits Z. Ovariectomy and subsequent treatment with estrogen receptor agonists tune the innate immune system of the hippocampus in middle-aged female rats. PLoS One. 2014;9(2):e88540.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Habib P, Beyer C. Regulation of brain microglia by female gonadal steroids. J Steroid Biochem Mol Biol. 2015;146:3–14.

    Article  CAS  PubMed  Google Scholar 

  36. Petrone AB, Simpkins JW, Barr TL. 17beta-estradiol and inflammation: implications for ischemic stroke. Aging Dis. 2014;5(5):340–5.

    PubMed  PubMed Central  Google Scholar 

  37. Chamniansawat S, Chongthammakun S. Inhibition of hippocampal estrogen synthesis by reactive microglia leads to down-regulation of synaptic protein expression. Neurotoxicology. 2015;46:25–34.

    Article  CAS  PubMed  Google Scholar 

  38. Siani F, Greco R, Levandis G, Ghezzi C, Daviddi F, Demartini C, et al. Influence of estrogen modulation on glia activation in a murine model of Parkinson’s disease. Front Neurosci. 2017;11:306.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Minghetti L, Polazzi E, Nicolini A, Creminon C, Levi G. Up-regulation of cyclooxygenase-2 expression in cultured microglia by prostaglandin E2, cyclic AMP and non-steroidal anti-inflammatory drugs. Eur J Neurosci. 1997;9(5):934–40.

    Article  CAS  PubMed  Google Scholar 

  40. Minghetti L, Levi G. Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog Neurobiol. 1998;54(1):99–125.

    Article  CAS  PubMed  Google Scholar 

  41. Morale MC, Serra PA, L'Episcopo F, Tirolo C, Caniglia S, Testa N, et al. Estrogen, neuroinflammation and neuroprotection in Parkinson’s disease: glia dictates resistance versus vulnerability to neurodegeneration. Neuroscience. 2006;138(3):869–78.

    Article  CAS  PubMed  Google Scholar 

  42. Hedges VL, Ebner TJ, Meisel RL, Mermelstein PG. The cerebellum as a target for estrogen action. Front Neuroendocrinol. 2012;33(4):403–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tsutsui K. Neurosteroid synthesis and action in the cerebellum during development. Cerebellum. 2008;7(3):502–4.

    CAS  PubMed  Google Scholar 

  44. Tai TC, Lye SJ, Adamson SL. Expression of prostaglandin E2 receptor subtypes in the developing sheep brainstem. Brain Res Mol Brain Res. 1998;57(1):161–6.

    Article  CAS  PubMed  Google Scholar 

  45. Kaufmann WE, Andreasson KI, Isakson PC, Worley PF. Cyclooxygenases and the central nervous system. Prostaglandins. 1997;54(3):601–24.

    Article  CAS  PubMed  Google Scholar 

  46. Paniagua-Herranz L, Gil-Redondo JC, Queipo MJ, Gonzalez-Ramos S, Bosca L, Perez-Sen R, et al. Prostaglandin E2 impairs P2Y2/P2Y4 receptor signaling in cerebellar astrocytes via EP3 receptors. Front Pharmacol. 2017;8:937.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Candelario-Jalil E, Slawik H, Ridelis I, Waschbisch A, Akundi RS, Hull M, et al. Regional distribution of the prostaglandin E2 receptor EP1 in the rat brain: accumulation in Purkinje cells of the cerebellum. J Mol Neurosci. 2005;27(3):303–10.

    Article  CAS  PubMed  Google Scholar 

  48. Butts T, Green MJ, Wingate RJ. Development of the cerebellum: simple steps to make a ‘little brain’. Development. 2014;141(21):4031–41.

    Article  CAS  PubMed  Google Scholar 

  49. Goldowitz D, Hamre K. The cells and molecules that make a cerebellum. Trends Neurosci. 1998;21(9):375–82.

    Article  CAS  PubMed  Google Scholar 

  50. Bowers JM, Perez-Pouchoulen M, Roby CR, Ryan TE, McCarthy MM. Androgen modulation of Foxp1 and Foxp2 in the developing rat brain: impact on sex specific vocalization. Endocrinology. 2014;155(12):4881–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. ten Donkelaar HJ, Lammens M, Wesseling P, Thijssen HO, Renier WO. Development and developmental disorders of the human cerebellum. J Neurol. 2003;250(9):1025–36.

    Article  PubMed  Google Scholar 

  52. Abraham H, Tornoczky T, Kosztolanyi G, Seress L. Cell formation in the cortical layers of the developing human cerebellum. Int J Dev Neurosci. 2001;19(1):53–62.

    Article  CAS  PubMed  Google Scholar 

  53. Heinsen H. Quantitative anatomical studies on the postnatal development of the cerebellum of the albino rat. Anat Embryol. 1977;151(2):201–18.

    Article  CAS  PubMed  Google Scholar 

  54. Ashwell K. Microglia and cell death in the developing mouse cerebellum. Brain Res Dev Brain Res. 1990;55(2):219–30.

    Article  CAS  PubMed  Google Scholar 

  55. He GL, Luo Z, Shen TT, Li P, Yang J, Luo X, et al. Inhibition of STAT3- and MAPK-dependent PGE2 synthesis ameliorates phagocytosis of fibrillar beta-amyloid peptide (1-42) via EP2 receptor in EMF-stimulated N9 microglial cells. J Neuroinflammation. 2016;13(1):296.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Theoharides TC, Asadi S, Patel AB. Focal brain inflammation and autism. J Neuroinflammation. 2013;10:46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol. 2005;57(1):67–81.

    Article  CAS  PubMed  Google Scholar 

  58. Pardo CA, Vargas DL, Zimmerman AW. Immunity, neuroglia and neuroinflammation in autism. Int Rev Psychiatry. 2005;17(6):485–95.

    Article  PubMed  Google Scholar 

  59. Rodriguez JI, Kern JK. Evidence of microglial activation in autism and its possible role in brain underconnectivity. Neuron Glia Biol. 2011;7(2–4):205–13.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Koyama R, Ikegaya Y. Microglia in the pathogenesis of autism spectrum disorders. Neurosci Res. 2015;100:1–5.

    Article  CAS  PubMed  Google Scholar 

  61. Takano T. Role of microglia in autism: recent advances. Dev Neurosci. 2015;37(3):195–202.

    Article  CAS  PubMed  Google Scholar 

  62. Lavaque E, Mayen A, Azcoitia I, Tena-Sempere M, Garcia-Segura LM. Sex differences, developmental changes, response to injury and cAMP regulation of the mRNA levels of steroidogenic acute regulatory protein, cytochrome p450scc, and aromatase in the olivocerebellar system. J Neurobiol. 2006;66(3):308–18.

    Article  CAS  PubMed  Google Scholar 

  63. Sierra A, Gottfried-Blackmore A, Milner TA, McEwen BS, Bulloch K. Steroid hormone receptor expression and function in microglia. Glia. 2008;56(6):659–74.

    Article  PubMed  Google Scholar 

  64. Bruce-Keller AJ, Keeling JL, Keller JN, Huang FF, Camondola S, Mattson MP. Antiinflammatory effects of estrogen on microglial activation. Endocrinology. 2000;141(10):3646–56.

    Article  CAS  PubMed  Google Scholar 

  65. Li R, Shen Y, Yang LB, Lue LF, Finch C, Rogers J. Estrogen enhances uptake of amyloid beta-protein by microglia derived from the human cortex. J Neurochem. 2000;75(4):1447–54.

    Article  CAS  PubMed  Google Scholar 

  66. Guo XZ, Su JD, Sun QW, Jiao BH. Expression of estrogen receptor (ER) -alpha and -beta transcripts in the neonatal and adult rat cerebral cortex, cerebellum, and olfactory bulb. Cell Res. 2001;11(4):321–4.

    Article  CAS  PubMed  Google Scholar 

  67. Price RH Jr, Handa RJ. Expression of estrogen receptor-beta protein and mRNA in the cerebellum of the rat. Neurosci Lett. 2000;288(2):115–8.

    Article  CAS  PubMed  Google Scholar 

  68. Shughrue PJ, Lane MV, Scrimo PJ, Merchenthaler I. Comparative distribution of estrogen receptor-alpha (ER-alpha) and beta (ER-beta) mRNA in the rat pituitary, gonad, and reproductive tract. Steroids. 1998;63(10):498–504.

    Article  CAS  PubMed  Google Scholar 

  69. Jakab RL, Wong JK, Belcher SM. Estrogen receptor beta immunoreactivity in differentiating cells of the developing rat cerebellum. J Comp Neurol. 2001;430(3):396–409.

    Article  CAS  PubMed  Google Scholar 

  70. McCarthy MM, Pickett LA, VanRyzin JW, Kight KE. Surprising origins of sex differences in the brain. Horm Behav. 2015;76:3–10.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lynch MA. The multifaceted profile of activated microglia. Mol Neurobiol. 2009;40(2):139–56.

    Article  CAS  PubMed  Google Scholar 

  72. Pauwels AM, Trost M, Beyaert R, Hoffmann E. Patterns, receptors, and signals: regulation of phagosome maturation. Trends Immunol. 2017;38(6):407–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fu R, Shen Q, Xu P, Luo JJ, Tang Y. Phagocytosis of microglia in the central nervous system diseases. Mol Neurobiol. 2014;49(3):1422–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the NIH Grant R01-MH091424 to M.M.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Perez-Pouchoulen.

Ethics declarations

The Institutional Animal Care and Use Committee of the University of Maryland, Baltimore approved all animal procedures.

Conflict of Interest

The authors declare that they have no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Pouchoulen, M., Yu, S.J., Roby, C.R. et al. Regulatory Control of Microglial Phagocytosis by Estradiol and Prostaglandin E2 in the Developing Rat Cerebellum. Cerebellum 18, 882–895 (2019). https://doi.org/10.1007/s12311-019-01071-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-019-01071-z

Keywords

Navigation