Skip to main content

Advertisement

Log in

Altered T Cell Migratory Capacity in the Progression from Barrett Oesophagus to Oesophageal Adenocarcinoma

  • Short Communication
  • Published:
Cancer Microenvironment

Abstract

Oesophageal adenocarcinoma (OAC) is an inflammation-driven cancer with poor prognosis and incidence is increasing rapidly. OAC arises from gastro-oesophageal reflux disease (GORD) and reflux-induced Barrett oesophagus (BO). The role of T cells in this disease progression is not yet fully understood. We have previously demonstrated higher proportions of pro-tumour Th2 cells in BO tissue, implicating them in its pathogenesis. While a Th2 immune profile is thought to underlie the metaplastic transformation in BO and promote OAC development, our studies suggest that the abundance of Th2 cells in BO tissue is likely to occur through altered T cell recruitment. This study examined the chemokine networks governing T cell migration to oesophageal tissue during disease progression. Here, we have identified that circulating T cells in OAC patients, exhibit impaired migratory capacity with decreased frequencies of Th1-associated CXCR3+ and Th17-associated CCR6+ cells. Despite the abundance of Th1 chemokines RANTES (CCL5) and MIP-1α (CCL3) in OAC tumour, enrichments of intratumoural T cells expressing corresponding receptors were not observed. These data suggest that T cell infiltration of oesophageal tissue is compromised in OAC and suggest that future therapies targeting T cell trafficking should occur at the pre-neoplastic stage. This is supported by the finding that antagonism of Th2-biased CCR4 significantly reduces T cell migration in BO but not OAC patients. Since we have previously reported a predominant Th2 immune profile in BO, we suggest that chemokine receptor antagonism may be a viable treatment option to alleviate Th2-predominance in BO and interrupt progression to OAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Vakil N et al (2006) The Montreal definition and classification of gastroesophageal reflux disease: a global evidence-based consensus. Am J Gastroenterol 101(8):1900–1920 quiz 1943

    Article  Google Scholar 

  2. Anand O, Wani S, Sharma P (2008) When and how to grade Barrett's columnar metaplasia: the Prague system. Best Pract Res Clin Gastroenterol 22(4):661–669

    Article  PubMed  Google Scholar 

  3. Solaymani-Dodaran M et al (2004) Risk of oesophageal cancer in Barrett's oesophagus and gastro-oesophageal reflux. Gut 53(8):1070–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kavanagh ME, Conroy MJ, Clarke NE, Gilmartin NT, O'Sullivan KE, Feighery R, MacCarthy F, O'Toole D, Ravi N, Reynolds JV, O'Sullivan J, Lysaght J (2016) Impact of the inflammatory microenvironment on T-cell phenotype in the progression from reflux oesophagitis to Barrett oesophagus and oesophageal adenocarcinoma. Cancer Lett 370(1):117–124

    Article  CAS  PubMed  Google Scholar 

  5. Shan J, Oshima T, Farre R, Fukui H, Watari J, Miwa H (2014) IL-4 induces columnar-like differentiation of esophageal squamous epithelium through JAK/PI3K pathway: possible role in pathogenesis of Barrett's esophagus. Am J Physiol Gastrointest Liver Physiol 306(8):G641–G649

    Article  CAS  PubMed  Google Scholar 

  6. Sakamoto T, Saito H, Tatebe S, Tsujitani S, Ozaki M, Ito H, Ikeguchi M (2006) Interleukin-10 expression significantly correlates with minor CD8+ T-cell infiltration and high microvessel density in patients with gastric cancer. Int J Cancer 118(8):1909–1914

    Article  CAS  PubMed  Google Scholar 

  7. Lysaght J, Allott EH, Donohoe CL, Howard JM, Pidgeon GP, Reynolds JV (2011) T lymphocyte activation in visceral adipose tissue of patients with oesophageal adenocarcinoma. Br J Surg 98(7):964–974

    Article  CAS  PubMed  Google Scholar 

  8. Conroy MJ, Galvin KC, Kavanagh ME, Mongan AM, Doyle SL, Gilmartin N, O'Farrelly C, Reynolds JV, Lysaght J (2016) CCR1 antagonism attenuates T cell trafficking to omentum and liver in obesity-associated cancer. Immunol Cell Biol 94(6):531–537

    Article  CAS  PubMed  Google Scholar 

  9. Conroy MJ, Maher SG, Melo AM, Doyle SL, Foley E, Reynolds JV, Long A, Lysaght J (2018) Identifying a novel role for Fractalkine (CX3CL1) in memory CD8(+) T cell accumulation in the Omentum of obesity-associated Cancer patients. Front Immunol 9:1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ishii T, Ishida T, Utsunomiya A, Inagaki A, Yano H, Komatsu H, Iida S, Imada K, Uchiyama T, Akinaga S, Shitara K, Ueda R (2010) Defucosylated humanized anti-CCR4 monoclonal antibody KW-0761 as a novel immunotherapeutic agent for adult T-cell leukemia/lymphoma. Clin Cancer Res 16(5):1520–1531

    Article  CAS  PubMed  Google Scholar 

  11. Ishida T et al (2004) The CC chemokine receptor 4 as a novel specific molecular target for immunotherapy in adult T-cell leukemia/lymphoma. Clin Cancer Res 10(22):7529–7539

    Article  CAS  PubMed  Google Scholar 

  12. Isomoto H, Wang A, Mizuta Y, Akazawa Y, Ohba K, Omagari K, Miyazaki M, Murase K, Hayashi T, Inoue K, Murata I, Kohno S (2003) Elevated levels of chemokines in esophageal mucosa of patients with reflux esophagitis. Am J Gastroenterol 98(3):551–556

    Article  CAS  PubMed  Google Scholar 

  13. Sallusto F, Lenig D, Mackay CR, Lanzavecchia A (1998) Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med 187(6):875–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sallusto F, Lanzavecchia A, Mackay CR (1998) Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses. Immunol Today 19(12):568–574

    Article  CAS  PubMed  Google Scholar 

  15. Skinnider BF, Mak TW (2002) The role of cytokines in classical Hodgkin lymphoma. Blood 99(12):4283–4297

    Article  CAS  PubMed  Google Scholar 

  16. Sozzani S et al (1998) The viral chemokine macrophage inflammatory protein-II is a selective Th2 chemoattractant. Blood 92(11):4036–4039

    CAS  PubMed  Google Scholar 

  17. Yang YM, Feng AL, Zhou CJ, Liang XH, Mao HT, Deng BP, Yan S, Sun JT, du LT, Liu J, Wang QJ, Neckenig MR, Yang QF, Qu X (2011) Aberrant expression of chemokine receptor CCR4 in human gastric cancer contributes to tumor-induced immunosuppression. Cancer Sci 102(7):1264–1271

    Article  CAS  PubMed  Google Scholar 

  18. Liu Q, Rexiati M, Yang Y, Wang WG, Azhati B, SaiMaiti W, Wang YJ (2014) Expression of chemokine receptor 4 was associated with poor survival in renal cell carcinoma. Med Oncol 31(4):882

    Article  CAS  PubMed  Google Scholar 

  19. Yamanaka K, Mizutani H (2011) The role of cytokines/chemokines in the pathogenesis of atopic dermatitis. Curr Probl Dermatol 41:80–92

    Article  CAS  Google Scholar 

  20. Pease JE, Horuk R (2014) Recent progress in the development of antagonists to the chemokine receptors CCR3 and CCR4. Expert Opin Drug Discovery 9(5):467–483

    Article  CAS  Google Scholar 

  21. Solari R, Pease JE (2015) Targeting chemokine receptors in disease--a case study of CCR4. Eur J Pharmacol 763(Pt B):169–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakagami Y, Kawase Y, Yonekubo K, Nosaka E, Etori M, Takahashi S, Takagi N, Fukuda T, Kuribayashi T, Nara F, Yamashita M (2010) RS-1748, a novel CC chemokine receptor 4 antagonist, inhibits ovalbumin-induced airway inflammation in Guinea pigs. Biol Pharm Bull 33(6):1067–1069

    Article  CAS  PubMed  Google Scholar 

  23. Liu J et al (2014) CCR6 is a prognostic marker for overall survival in patients with colorectal cancer, and its overexpression enhances metastasis in vivo. PLoS One 9(6):e101137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Frick VO et al (2016) Chemokine/chemokine receptor pair CCL20/CCR6 in human colorectal malignancy: an overview. World J Gastroenterol 22(2):833–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kapur N, Mir H, Clark III CE, Krishnamurti U, Beech DJ, Lillard JW, Singh S (2016) CCR6 expression in colon cancer is associated with advanced disease and supports epithelial-to-mesenchymal transition. Br J Cancer 114(12):1343–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nandi B et al (2016) Stromal CCR6 drives tumor growth in a murine transplantable colon cancer through recruitment of tumor-promoting macrophages. Oncoimmunology 5(8):e1189052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Meissner A et al (2003) CC chemokine ligand 20 partially controls adhesion of naive B cells to activated endothelial cells under shear stress. Blood 102(8):2724–2727

    Article  CAS  PubMed  Google Scholar 

  28. Kistner L et al (2017) Interferon-inducible CXC-chemokines are crucial immune modulators and survival predictors in colorectal cancer. Oncotarget 8(52):89998–90012

    Article  PubMed  PubMed Central  Google Scholar 

  29. Groom JR, Luster AD (2011) CXCR3 in T cell function. Exp Cell Res 317(5):620–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cocchi F, DeVico AL, Yarchoan R, Redfield R, Cleghorn F, Blattner WA, Garzino-Demo A, Colombini-Hatch S, Margolis D, Gallo RC (2000) Higher macrophage inflammatory protein (MIP)-1alpha and MIP-1beta levels from CD8+ T cells are associated with asymptomatic HIV-1 infection. Proc Natl Acad Sci U S A 97(25):13812–13817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P (1995) Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 270(5243):1811–1815

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all of the patients and staff at the endoscopy and oesophageal unit at St. James’s Hospital for their participation in this study.

Funding

This work was funded by a Health Research Board of Ireland’s Health Research Award HRA_POR/2012/18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne Lysaght.

Ethics declarations

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Ethical Approval

The study received ethical approval from the St James’s Hospital Ethics Review Board.

Conflict of Interest Statement

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavanagh, M.E., Conroy, M.J., Clarke, N.E. et al. Altered T Cell Migratory Capacity in the Progression from Barrett Oesophagus to Oesophageal Adenocarcinoma. Cancer Microenvironment 12, 57–66 (2019). https://doi.org/10.1007/s12307-019-00220-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-019-00220-6

Keywords

Navigation