Skip to main content

Advertisement

Log in

Intra-femoral tunnel graft lengths less than 20 mm do not predispose to early graft failure, inferior outcomes or poor function. A prospective clinico-radiological comparative study

  • Original Article
  • Published:
MUSCULOSKELETAL SURGERY Aims and scope Submit manuscript

Abstract

Purpose

Increasing demands on skills with mounting pressures from expectations from arthroscopic anterior cruciate ligament (ACL) reconstructions requires precise knowledge of technical details by surgeons. One such element is the minimum length of graft in femoral tunnel to allow for adequate tendon-to-bone healing and early return to activities and sports. This has, however, remained an unanswered question.

Purpose

To study and compare clinico-radiological outcomes of ACL reconstructions in patients with < 20 mm of intra-femoral tunnel graft length with those measuring ≥ 20 mm.

Methods

All eligible patients undergoing arthroscopic ACL reconstruction were sequentially divided into two groups based on the intra-femoral tunnel graft lengths (A: < 20 mm, n = 27; and B: ≥ 20 mm, n = 25). Exclusions were made for those > 45 years of age, with chondral and/or multi-ligamentous injuries and with systemic pathologies. All patients were postoperatively evaluated in clinics by physical examination and functional scoring (Lysholm and modified Cincinnati scores) at 3, 6 and 12-month intervals. Graft vascularity was assessed by signal-to-noise quotient ratio (SNQR) using magnetic resonance imaging (MRI) at 3 and 12 months.

Results

No significant differences were noted in mean Lysholm and modified Cincinnati scores between the two groups at the end of 1 year. There were also no significant differences in graft maturation over time and SNQR at 3 and 12 months in the region of interest (ROI).

Conclusions

Intra-femoral tunnel graft length of less than 20 mm does not compromise early clinical and functional outcomes of ACL reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Yes.

Code availability

Custom.

References

  1. Alentorn-Geli E, Samitier G, Álvarez P, Steinbacher G, Cugat R (2010) Anteromedial portal versus transtibial drilling techniques in ACL reconstruction: a blinded cross-sectional study at two- to five-year follow-up. Int Orthop 34:747–754. https://doi.org/10.1007/s00264-010-1000-1

    Article  PubMed  PubMed Central  Google Scholar 

  2. Duquin T, Wind W, Fineberg M et al (2009) Current trends in anterior cruciate ligament reconstruction. J Knee Surg 22:7–12. https://doi.org/10.1055/s-0030-1247719

    Article  PubMed  Google Scholar 

  3. Morgan J, Dahm D, Levy B, Stuart M (2012) Femoral tunnel malposition in ACL revision reconstruction. J Knee Surg 25:361–368. https://doi.org/10.1055/s-0031-1299662

    Article  PubMed  PubMed Central  Google Scholar 

  4. Harner C, Honkamp N, Ranawat A (2008) Anteromedial Portal Technique for Creating the Anterior Cruciate Ligament Femoral Tunnel. Arthroscopy 24:113–115. https://doi.org/10.1016/j.arthro.2007.07.019

    Article  PubMed  Google Scholar 

  5. Bedi A, Altchek D (2009) The “Footprint” anterior cruciate ligament technique: an anatomic approach to anterior cruciate ligament reconstruction. Arthroscopy 25:1128–1138. https://doi.org/10.1016/j.arthro.2009.03.008

    Article  PubMed  Google Scholar 

  6. Bedi A, Musahl V, Steuber V et al (2011) Transtibial versus anteromedial portal reaming in anterior cruciate ligament reconstruction: an anatomic and biomechanical evaluation of surgical technique. Arthroscopy 27:380–390. https://doi.org/10.1016/j.arthro.2010.07.018

    Article  PubMed  Google Scholar 

  7. Gavriilidis I, Motsis E, Pakos E et al (2008) Transtibial versus anteromedial portal of the femoral tunnel in ACL reconstruction: a cadaveric study. Knee 15:364–367. https://doi.org/10.1016/j.knee.2008.05.004

    Article  PubMed  Google Scholar 

  8. Hussein M, van Eck C, Cretnik A et al (2012) Individualized anterior cruciate ligament surgery. Am J Sports Med 40:1781–1788. https://doi.org/10.1177/0363546512446928

    Article  PubMed  Google Scholar 

  9. Zantop T, Ferretti M, Bell K et al (2008) Effect of tunnel-graft length on the biomechanics of anterior cruciate ligament-reconstructed knees. Am J Sports Med 36:2158–2166. https://doi.org/10.1177/0363546508320572

    Article  PubMed  Google Scholar 

  10. Cavaignac E, Marot V, Faruch M et al (2017) Hamstring graft incorporation according to the length of the graft inside tunnels. Am J Sports Med 46:348–356. https://doi.org/10.1177/0363546517733472

    Article  PubMed  Google Scholar 

  11. Richardson WS, Wilson MC, Nishikawa J, Hayward RS (1995) The well-built clinical question: a key to evidence-based decisions. ACP J Club 123(3):A12–A13

    Article  CAS  PubMed  Google Scholar 

  12. Yamazaki S, Yasuda K, Tomita F et al (2006) The effect of intraosseous graft length on tendon-bone healing in anterior cruciate ligament reconstruction using flexor tendon. Knee Surg Sports Traumatol Arthrosc 14:1086–1093. https://doi.org/10.1007/s00167-006-0110-1

    Article  PubMed  Google Scholar 

  13. Yuan F, Zhou W, Cai J et al (2013) Optimal graft length for anterior cruciate ligament reconstruction: a biomechanical study in beagles. Orthopedics 36:e588–e592. https://doi.org/10.3928/01477447-20130426-20

    Article  PubMed  Google Scholar 

  14. Mariscalco M, Magnussen R, Mitchell J et al (2014) How much hamstring graft needs to be in the femoral tunnel? A MOON cohort study. Eur Orthop Traumatol 6:9–13. https://doi.org/10.1007/s12570-014-0275-x

    Article  PubMed Central  Google Scholar 

  15. Guglielmetti L, Shimba L, do Santos L, et al (2017) The influence of femoral tunnel length on graft rupture after anterior cruciate ligament reconstruction. J Orthop Traumatol 18:243–250. https://doi.org/10.1007/s10195-017-0448-9

    Article  PubMed  PubMed Central  Google Scholar 

  16. Weiler A, Peters G, Mäurer J et al (2001) Biomechanical properties and vascularity of an anterior cruciate ligament graft can be predicted by contrast-enhanced magnetic resonance imaging. Am J Sports Med 29:751–761. https://doi.org/10.1177/03635465010290061401

    Article  CAS  PubMed  Google Scholar 

  17. Tegner Y, Lysholm J (1985) Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res 198:43–49

    Article  Google Scholar 

  18. Agel J, LaPrade R (2009) Assessment of Differences Between the Modified Cincinnati and International Knee Documentation Committee Patient Outcome Scores. Am J Sports Med 37:2151–2157. https://doi.org/10.1177/0363546509337698

    Article  PubMed  Google Scholar 

  19. Kulczycka P, Larbi A, Malghem J et al (2015) Imaging ACL reconstructions and their complications. Diag Interv Imaging 96:11–19. https://doi.org/10.1016/j.diii.2014.04.007

    Article  CAS  Google Scholar 

  20. Grassi A, Bailey J, Signorelli C et al (2016) Magnetic resonance imaging after anterior cruciate ligament reconstruction: a practical guide. World J Orthop 7:638. https://doi.org/10.5312/wjo.v7.i10.638

    Article  PubMed  PubMed Central  Google Scholar 

  21. Janssen R, Scheffler S (2013) Intra-articular remodelling of hamstring tendon grafts after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 22:2102–2108. https://doi.org/10.1007/s00167-013-2634-5

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ntoulia A, Papadopoulou F, Ristanis S et al (2011) Revascularization process of the bone-patellar tendon–bone autograft evaluated by contrast-enhanced magnetic resonance imaging 6 and 12 months after anterior cruciate ligament reconstruction. Am J Sports Med 39:1478–1486. https://doi.org/10.1177/0363546511398039

    Article  PubMed  Google Scholar 

  23. Murakami Y, Sumen Y, Ochi M et al (1999) Appearance of anterior cruciate ligament autografts in their tibial bone tunnels on oblique axial MRI. Magn Reson Imaging 17:679–687. https://doi.org/10.1016/s0730-725x(99)00007-7

    Article  CAS  PubMed  Google Scholar 

  24. Li H, Tao H, Cho S et al (2012) Difference in graft maturity of the reconstructed anterior cruciate ligament 2 years postoperatively. Am J Sports Med 40:1519–1526. https://doi.org/10.1177/0363546512443050

    Article  PubMed  Google Scholar 

  25. White L, Kramer J, Recht M (2005) MR imaging evaluation of the postoperative knee: ligaments, menisci, and articular cartilage. Skeletal Radiol 34:431–452. https://doi.org/10.1007/s00256-005-0914-y

    Article  PubMed  Google Scholar 

  26. Li H, Chen J, Li H et al (2016) MRI-based ACL graft maturity does not predict clinical and functional outcomes during the first year after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 25:3171–3178. https://doi.org/10.1007/s00167-016-4252-5

    Article  PubMed  Google Scholar 

  27. Saupe N, White L, Chiavaras M et al (2008) Anterior cruciate ligament reconstruction grafts: MR imaging features at long-term follow-up—correlation with functional and clinical evaluation. Radiology 249:581–590. https://doi.org/10.1148/radiol.2492071651

    Article  PubMed  Google Scholar 

  28. Biercevicz A, Akelman M, Fadale P et al (2014) MRI volume and signal intensity of ACL graft predict clinical, functional, and patient-oriented outcome measures after ACL reconstruction. Am J Sports Med 43:693–699. https://doi.org/10.1177/0363546514561435

    Article  PubMed  PubMed Central  Google Scholar 

  29. Colombet P, Graveleau N, Jambou S (2016) Incorporation of hamstring grafts within the tibial tunnel after anterior cruciate ligament reconstruction. Am J Sports Med 44:2838–2845. https://doi.org/10.1177/0363546516656181

    Article  PubMed  Google Scholar 

  30. Smith P, Stannard J, Pfeiffer F et al (2016) Suspensory versus interference screw fixation for arthroscopic anterior cruciate ligament reconstruction in a translational large-animal model. Arthroscopy 32:1086–1097. https://doi.org/10.1016/j.arthro.2015.11.026

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

No other contributors, no sources of funding, no assistance received

Funding

None received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Gupta.

Ethics declarations

Conflict of interest

Drs. Prateek Gupta, Ashis Acharya, Vishesh Khanna and Amit Mourya certify that they have no commercial associations that might pose a conflict of interest in connection with the submitted article.

Ethical approval.

Ethical review committee statement—included: Ethical Committee clearance obtained (vide clearance letter no. EC/09/15/896).

Consent to participate.

Informed consents were duly obtained from all eligible candidates.

Consent for publication.

Obtained.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P.K., Acharya, A., Khanna, V. et al. Intra-femoral tunnel graft lengths less than 20 mm do not predispose to early graft failure, inferior outcomes or poor function. A prospective clinico-radiological comparative study. Musculoskelet Surg 107, 179–186 (2023). https://doi.org/10.1007/s12306-022-00740-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12306-022-00740-3

Keywords

Navigation